PALOMARES NUCLEAR WEAPONS ACCIDENT

REVISED DOSE EVALUATION REPORT

Volume III
 Appendix C. 2 - Repeat Analysis Cases Appendix C. 3 - Contamination Cutoff Cases Appendix C. 4 - Remaining Cases

Date: April 2001
Contract: GS-35F-4813G
Task Order: WFZ578410
T0799BG0031
Prepared For: Radiation Protection Division
Air Force Medical Operations Agency Bolling AFB, DC 20332-7050

Prepared By: LABAT-ANDERSON INCORPORATED 8000 West Park Drive, Suite 400
McLean, VA 22102

Intakes and estimates of dose were prepared using CINDY Version 1.4 and LUDEP Version 2.05.
Intake was estimated using the Jones excretion model in CINDY and LUDEP.
Inhalation intake was estimated using the ICRP 66 respiratory tract model in LUDEP.
CINDY estimated dose derived using the ICRP 30, Part 4, General Systemic Model and weighting factors; and LUDEP used the recommendations of ICRP 60.

Modeling:

CINDY and LUDEP were used to estimate the intake and dose with the following results:

Model	Intake (pCi)	CEDE $(\mathrm{rem} / \mathrm{Sv})$
CINDY	140,000	$43 / 0.43$
LUDEP	383,000	$27 / 0.27$

Doses to individual organs and estimation of the effective dose equivalent using CINDY reported the following results:

Organ	Dose Equivalent $($ rem/Sv)	Weighting Factors	Weighted Organ Dose Equivalent $($ rem/Sv
Testes	$6.2 \mathrm{E}+00 / 6.2 \mathrm{E}-02$	$2.5 \mathrm{E}-01$	$1.6 \mathrm{E}+00 / 1.6 \mathrm{E}-02$
Breast	$2.1 \mathrm{E}-04 / 2.1 \mathrm{E}-06$	$1.5 \mathrm{E}-01$	$3.1 \mathrm{E}-05 / 3.1 \mathrm{E}-07$
Red Marrow	$3.4 \mathrm{E}+01 / 3.4 \mathrm{E}-01$	$1.2 \mathrm{E}-01$	$4.0 \mathrm{E}+00 / 4.0 \mathrm{E}-02$
Lung	$1.6 \mathrm{E}+02 / 1.6 \mathrm{E}+00$	$1.2 \mathrm{E}-01$	$1.9 \mathrm{E}+01 / 1.9 \mathrm{E}-01$
Thyroid	$2.0 \mathrm{E}-04 / 2.0 \mathrm{E}-06$	$3.0 \mathrm{E}-02$	$5.9 \mathrm{E}-06 / 5.9 \mathrm{E}-08$
Bone Surface	$4.4 \mathrm{E}+02 / 4.4 \mathrm{E}+00$	$3.0 \mathrm{E}-02$	$1.3 \mathrm{E}+01 / 1.3 \mathrm{E}-01$
Liver	$7.8 \mathrm{E}+017.8 \mathrm{E}-01$	$6.0 \mathrm{E}-02$	$4.7 \mathrm{E}+00 / 4.7 \mathrm{E}-02$
Other	$7.4 \mathrm{E}+00 / 7.4 \mathrm{E}-02$	$6.0 \mathrm{E}-02$	$4.4 \mathrm{E}-01 / 4.4 \mathrm{E}-03$
Lower Large Intestine	$1.6 \mathrm{E}-02 / 1.6 \mathrm{E}-04$	$6.0 \mathrm{E}-02$	$9.5 \mathrm{E}-04 / 9.5 \mathrm{E}-06$
Upper Large Intestine	$5.3 \mathrm{E}-03 / 5.3 \mathrm{E}-05$	$6.0 \mathrm{E}-02$	$3.2 \mathrm{E}-04 / 3.2 \mathrm{E}-06$
Small Intestine	$1.1 \mathrm{E}-03 / 1.1 \mathrm{E}-05$	$6.0 \mathrm{E}-02$	$6.5 \mathrm{E}-05 / 6.5 \mathrm{E}-07$
Effective Dose Equivalent			$4.3 \mathrm{E}+01 / 4.3 \mathrm{E}-01$

One urine sample was analyzed by gross alpha counting only, and the other was analyzed by both gross alpha counting and alpha spectrometry. For the sample analyzed with both methods, the gross alpha analysis was not included in the modeling since no result was reported and an alpha spectrometry result was available for the same sample. The sample analyzed by gross alpha counting only was not included in the analysis since it was an on-site sample with a result $>0.1 \mathrm{pCi}$, leading to a suspicion of sample contamination. The result was fit using CINDY and the Jones excretion model, to estimate an intake ($140,000 \mathrm{pCi}$), organ doses, and a CEDE ($43 \mathrm{rem} / 0.43 \mathrm{~Sv}$; ICRP-30) as shown above. LUDEP was also used to estimate an intake of $383,000 \mathrm{pCi}$ and a CEDE (ICRP-60) of $27 \mathrm{rem}(0.27 \mathrm{~Sv})$.

Conclusion:

Based on the results of intake estimates and dose calculations, this individual received an estimated intake of about $140,000 \mathrm{pCi}$ of ${ }^{239} \mathrm{Pu}$ resulting in a 50 -year committed effective dose equivalent of 43 rem (0.43 Sv). That dose is more than the cumulative dose (7 rem) from a lifetime (70 years) of exposure at the current level $(0.100 \mathrm{rem})$ for members of the public. It is less than the working lifetime limit of 50 rem recommended by the National Council on Radiation Protection and Measurements (NCRP). Serious health effects are not associated with that dose level. However, follow-up urine sampling now could be considered to provide additional assessment of the exposure.

Prepared By:

Name: \qquad

Signature: \qquad

Peer Reviewed By:

Name: \qquad
Signature: \qquad Date: \qquad

FEB 29 包

(b) (6)

Internal Dosimetry Evaluation Form

RECOMMIENDATIONS:			
Additional Bioassay Required Suggested Sampling Frequency:	\square Urinalysis	\square Fecal	\square In Vivo
Work Restrictions: N/A			

Internal Dosimetry Case Narrative

Identification:

Incidents:

Individual participated on site in response duties resulting from an accident involving three nuclear weapons at Palomares, Spain on January 17, 1966. Individual may have been exposed to weapons materials (primarily plutonium-239) by inhalation and ingestion from contaminated weapon and aircraft debris, lands, and vegetation. Primary activities included search, radiological monitoring, recovery of accident debris, and processing for disposal.

Previous Intake/Dose Assessments:

This assessment applies to Palomares accident activities only. No previous intakes or doses were considered.

Other Information:

None.
Radionuclide(s): ${ }^{239} \mathrm{Pu}$.

Assumptions/Basis/Data Sources:

Acute inhalation intake of Pu-239; 100% Class $\mathrm{Y} ; 1 \mu \mathrm{~m}$ AMAD particle size on $1 / 29 / 66$. The date is the midpoint of the period on station from $1 / 20 / 66$ to $2 / 7 / 66$.

Inhalation was assumed as the major route of entry because the primary contaminant was created by explosion and fire and deposited in sandy soil and on buildings and plants. Conditions were generally windy and significant activity was underway.

Dose was determined entirely from modeling intake based on the following urinalysis results for this individual. This individual's sample was identified for a follow-up analysis using alpha spectrometry after the initial gross alpha result was reviewed. That is, the initial urine sample for this individual was reprocessed radiochemically for alpha spectrometry. Results of the follow-up alpha spectrometry analysis are reported below and were used in preparing the dose estimate.

Sample	Analysis*	Sample Date	Result (pCi/day)	Error (pCi/day)	Included
$66-442$	G	$2 / 7 / 66$	1.24	0.950	
$66-3267$	AS	$6 / 1 / 66$	0.091	0.065	\checkmark
$66-3267$	G	$6 / 1 / 66$	NR	NR	

* G means gross alpha counting; AS means alpha spectrometry; NR means no result reported.

Intakes and estimates of dose were prepared using CINDY Version 1.4 and LUDEP Version 2.05.
Intake was estimated using the Jones excretion model in CINDY and LUDEP.
Inhalation intake was estimated using the ICRP 66 respiratory tract model in LUDEP.
CINDY estimated dose derived using the ICRP 30, Part 4, General Systemic Model and weighting factors; and LUDEP used the recommendations of ICRP 60.

Modeling:
CINDY and LUDEP were used to estimate the intake and dose with the following results:

Model	Intake (pCi)	CEDE (rem/Sv)
CINDY	130,000	$40 / 0.4$
LUDEP	370,000	$26 / 0.26$

Doses to individual organs and estimation of the effective dose equivalent using CINDY reported the following results:

Organ	Dose Equivalent (rem/Sv)	Weighting Factors	Weighted Organ Dose Equivalent (rem/Sv)
Testes	$5.8 \mathrm{E}+00 / 5.8 \mathrm{E}-02$	$2.5 \mathrm{E}-01$	$1.5 \mathrm{E}+00 / 1.5 \mathrm{E}-02$
Breast	$1.9 \mathrm{E}-04 / 1.9 \mathrm{E}-06$	$1.5 \mathrm{E}-01$	$2.9 \mathrm{E}-05 / 2.9 \mathrm{E}-07$
Red Marrow	$3.1 \mathrm{E}+01 / 3.1 \mathrm{E}-01$	$1.2 \mathrm{E}-01$	$3.8 \mathrm{E}+00 / 3.8 \mathrm{E}-02$
Lung	$1.5 \mathrm{E}+02 / 1.5 \mathrm{E}+00$	$1.2 \mathrm{E}-01$	$1.8 \mathrm{E}+01 / 1.8 \mathrm{E}-01$
Thyroid	$1.8 \mathrm{E}-04 / 1.8 \mathrm{E}-06$	$3.0 \mathrm{E}-02$	$5.4 \mathrm{E}-06 / 5.4 \mathrm{E}-08$
Bone Surface	$4.1 \mathrm{E}+02 / 4.1 \mathrm{E}+00$	$3.0 \mathrm{E}-02$	$1.2 \mathrm{E}+01 / 1.2 \mathrm{E}-01$
Liver	$7.2 \mathrm{E}+01 / 7.2 \mathrm{E}-01$	$6.0 \mathrm{E}-02$	$4.3 \mathrm{E}+00 / 4.3 \mathrm{E}-02$
Other	$6.9 \mathrm{E}+00 / 6.9 \mathrm{E}-02$	$6.0 \mathrm{E}-02$	$4.1 \mathrm{E}-01 / 4.1 \mathrm{E}-03$
Lower Large Intestine	$1.5 \mathrm{E}-021.5 \mathrm{E}-04$	$6.0 \mathrm{E}-02$	$8.9 \mathrm{E}-04 / 8.9 \mathrm{E}-06$
Upper Large Intestine	$5.0 \mathrm{E}-03 / 5.0 \mathrm{E}-05$	$6.0 \mathrm{E}-02$	$3.0 \mathrm{E}-04 / 3.0 \mathrm{E}-06$
Small Intestine	$1.0 \mathrm{E}-03 / 1.0 \mathrm{E}-05$	$6.0 \mathrm{E}-02$	$6.1 \mathrm{E}-05 / 6.1 \mathrm{E}-07$
Effective Dose Equivalent			$4.0 \mathrm{E}+01 / 4.0 \mathrm{E}-01$

One urine sample was analyzed by gross alpha counting only, and the other was analyzed by both gross alpha counting and alpha spectrometry. For the sample analyzed with both methods, the gross alpha analysis was not included in the modeling since no result was reported and an alpha spectrometry result was available for the same sample. The sample analyzed by gross alpha counting only was not included in the analysis since it was an on-site sample with a result $>0.1 \mathrm{pCi}$, leading to a suspicion of sample contamination. The result was fit using CINDY and the Jones excretion model, to estimate an intake $(130,000 \mathrm{pCi})$, organ doses, and a CEDE ($40 \mathrm{rem} / 0.4 \mathrm{~Sv}$; ICRP-30) as shown above. LUDEP was also used to estimate an intake of $370,000 \mathrm{pCi}$ and a CEDE (ICRP-60) of $26 \mathrm{rem}(0.26 \mathrm{~Sv}$).

Conclusion:

Based on the results of intake estimates and dose calculations, this individual received an estimated intake of about $130,000 \mathrm{pCi}$ of ${ }^{239} \mathrm{Pu}$ resulting in a 50 -year committed effective dose equivalent of 40 rem (0.4 Sv). That dose is more than the cumulative dose (7 rem) from a lifetime (70 years) of exposure at the current level (0.100 rem) for members of the public. It is less than the working lifetime limit of 50 rem recommended by the National Council on Radiation Protection and Measurements (NCRP). Serious health effects are not associated with that dose level. However, follow-up urine sampling now could be considered to provide additional assessment of the exposure.

Prepared By:

Name: \qquad

Signature: \qquad

Peer Reviewed By:

Name: \qquad
Signature: \qquad Date: \qquad

Release of this document is restricted under the provisions of the Privacy Act, 5 U.S.C. 552(a). C.2-248

FEB 101966

Internal Dosimetry Evaluation Form

NAME：（1）（6）			SSN:	
MODE OF INTAKE： 区 Inhalation \square Ingestion \square Unknown	\square Injection \square Absorption \square Not applicable	INTAKE DATE OR PERIOD： 2／4／66 through $3 / 1 / 66$ ，onsite 2／16／66		
SUMMARY OF EXIPOSURE CONDITIONS： Radionuclides／Respiratory Class／Particle Size：${ }^{239} \mathrm{Pu} / 100 \%$ Class $\mathrm{Y} / \mathrm{l} \mu \mathrm{m}$ AMAD Date or Period of Evaluated Data： 1 sample，3／1／66 Duration of Exposure：Unknown Location of Exposure：Camp Wilson，near Palomares，Spain				
EVALUATION DATA： Air Sampling Health Physics Survey Data Bioassay－Urinalysis Fecal Nasal Smears In Vivo	\square Attached \square Attached $\boxed{\text { Attached }}$ \square Attached \square Attached \square Attached	\square In Process	《 Unavailable 区 Unavailable \square Unavailable 区 Unavailable 《 Unavailable 区 Unavailable	
Medical Treatment： Skin Decontamination： Decorporation： Catharsis： Surgical excision：	\square Yes \square Yes \square Yes \square Yes	Q No Date： Q No Agent Х No Agent： 区 No Date：		Date： Date：

EVALUATION METHODOLOGY：

Assumptions：Acute inhalation intake of ${ }^{239} \mathrm{Pu}, 100 \%$ Class $\mathrm{Y}, 1 \mu \mathrm{~m}$ AMAD particle size on $2 / 16 / 66$

Code／Model used for：	Intake Estimate：CINDY，Ver．1．4／JONES
	Dose Estimate：C CINDY，Ver．1．4／ICRP 30，Part 4，General Systemic Model

RESULTS SUMMARY
Estimated Intake Activity（pCi）： 270000
50 YR CEDE（rem）： 83 （ 0.83 Sv ）

Organ Dose Equivalent Summary	$\mathbf{5 0}$ YR CDE（rem／Sv）
Bone Surface	$840 / 8.4$
Lung	$310 / 3.1$
Liver	$150 / 1.5$
Red Marrow	$65 / 0.65$
Other	$14 / 0.14$
Testes	$12 / 0.12$

DOSE ASSESSOR：	DATE：＿＿＿		PEER REVIEWER：
Signature：		Signature：	
Print Name：	Print Name：		
SSN：			

Internal Dosimetry Case Narrative

Identification:

Name:

SSN:

Incidents:

Individual participated on site in response duties resulting from an accident involving three nuclear weapons at Palomares, Spain on January 17, 1966. Individual may have been exposed to weapons materials (primarily plutonium-239) by inhalation and ingestion from contaminated weapon and aircraft debris, lands, and vegetation. Primary activities included search, radiological monitoring, recovery of accident debris, and processing for disposal.

Previous Intake/Dose Assessments:

This assessment applies to Palomares accident activities only. No previous intakes or doses were considered.

Other Information:
None.
Radionuclide(s): ${ }^{239} \mathrm{Pu}$.

Assumptions/Basis/Data Sources:

Acute inhalation intake of Pu-239; 100% Class $\mathrm{Y} ; 1 \mu \mathrm{~m}$ AMAD particle size on $2 / 16 / 66$. The date is the midpoint of the period on station from 2/4/66 to 3/1/66.

Inhalation was assumed as the major route of entry because the primary contaminant was created by explosion and fire and deposited in sandy soil and on buildings and plants. Conditions were generally windy and significant activity was underway.

Dose was determined entirely from modeling intake based on the following urinalysis results for this individual. This individual's sample was identified for a follow-up analysis using alpha spectrometry after the initial gross alpha result was reviewed. That is, the initial urine sample for this individual was reprocessed radiochemically for alpha spectrometry. Results of the follow-up alpha spectrometry analysis are reported below and were used in preparing the dose estimate.

Sample	Analysis*	Sample Date	Result (pCi/day)	Error (pCi/day)	Included
$66-1855$	AS	$3 / 1 / 66$	0.294	0.007	\checkmark
$66-1855$	G	3/1/66	1.52	0.310	
G means gross alpha counting; AS means alpha spectrometry.					

Intakes and estimates of dose were prepared using CINDY Version 1.4 and LUDEP Version 2.05.
Intake was estimated using the Jones excretion model in CINDY and LUDEP.
Inhalation intake was estimated using the ICRP 66 respiratory tract model in LUDEP.
CINDY estimated dose derived using the ICRP 30, Part 4, General Systemic Model and weighting factors; and LUDEP used the recommendations of ICRP 60.

Modeling:
CINDY and LUDEP were used to estimate the intake and dose with the following results:

Model	Intake (pCi)	CEDE $(\mathrm{rem} / \mathrm{Sv})$
CINDY	270,000	$83 / 0.83$
LUDEP	$1,270,000$	$89 / 0.89$

Doses to individual organs and estimation of the effective dose equivalent using CINDY reported the following results:

Organ	Dose Equivalent $($ rem/Sv)	Weighting Factors	Weighted Organ Dose Equivalent $($ rem $/$ Sv $)$
Testes	$1.2 \mathrm{E}+01 / 1.2 \mathrm{E}-01$	$2.5 \mathrm{E}-01$	$3.0 \mathrm{E}+00 / 3.0 \mathrm{E}-02$
Breast	$4.0 \mathrm{E}-04 / 4.0 \mathrm{E}-06$	$1.5 \mathrm{E}-01$	$6.0 \mathrm{E}-05 / 6.0 \mathrm{E}-07$
Red Marrow	$6.5 \mathrm{E}+01 / 6.5 \mathrm{E}-01$	$1.2 \mathrm{E}-01$	$7.8 \mathrm{E}+00 / 7.8 \mathrm{E}-02$
Lung	$3.1 \mathrm{E}+02 / 3.1 \mathrm{E}+00$	$1.2 \mathrm{E}-01$	$3.7 \mathrm{E}+01 / 3.7 \mathrm{E}-01$
Thyroid	$3.8 \mathrm{E}-04 / 3.8 \mathrm{E}-06$	$3.0 \mathrm{E}-02$	$1.1 \mathrm{E}-05 / 1.1 \mathrm{E}-07$
Bone Surface	$8.4 \mathrm{E}+02 / 8.4 \mathrm{E}+00$	$3.0 \mathrm{E}-02$	$2.5 \mathrm{E}+01 / 2.5 \mathrm{E}-01$
Liver	$1.5 \mathrm{E}+02 / 1.5 \mathrm{E}+00$	$6.0 \mathrm{E}-02$	$9.0 \mathrm{E}+00 / 9.0 \mathrm{E}-02$
Other	$1.4 \mathrm{E}+01 / 1.4 \mathrm{E}-01$	$6.0 \mathrm{E}-02$	$8.6 \mathrm{E}-01 / 8.6 \mathrm{E}-03$
Lower Large Intestine	$3.1 \mathrm{E}-02 / 3.1 \mathrm{E}-04$	$6.0 \mathrm{E}-02$	$1.8 \mathrm{E}-03 / 1.8 \mathrm{E}-05$
Upper Large Intestine	$1.0 \mathrm{E}-02 / 1.0 \mathrm{E}-04$	$6.0 \mathrm{E}-02$	$6.2 \mathrm{E}-04 / 6.2 \mathrm{E}-06$
Small Intestine	$2.1 \mathrm{E}-03 / 2.1 \mathrm{E}-05$	$6.0 \mathrm{E}-02$	$1.3 \mathrm{E}-04 / 1.3 \mathrm{E}-06$
Effective Dose Equivalent			$8.3 \mathrm{E}+01 / 8.3 \mathrm{E}-01$

One urine sample was analyzed by gross alpha counting and alpha spectrometry. The gross alpha analysis was not included in the modeling since an alpha spectrometry result was available for the same sample. The result was fit using CINDY and the Jones excretion model, to estimate an intake ($270,000 \mathrm{pCi}$), organ doses, and a CEDE ($83 \mathrm{rem} / 0.83 \mathrm{~Sv}$; ICRP-30) as shown above. LUDEP was also used to estimate an intake of $1,270,000 \mathrm{pCi}$ and a CEDE (ICRP-60) of $89 \mathrm{rem}(0.89 \mathrm{~Sv})$.

Conclusion:

Based on the results of intake estimates and dose calculations, this individual received an estimated intake of about $270,000 \mathrm{pCi}$ of ${ }^{239} \mathrm{Pu}$ resulting in a 50 -year committed effective dose equivalent of $83 \mathrm{rem}(0.83$ Sv). That dose is more than the cumulative dose (7 rem) from a lifetime (70 years) of exposure at the current level (0.100 rem) for members of the public. It is more than the working lifetime limit of 50 rem
recommended by the National Council on Radiation Protection and Measurements (NCRP). These dose levels are significant, although they were based on very limited data. However, follow-up urine sampling should be considered to provide additional assessment of the exposure.

Prepared By:

Name: \qquad
Signature: \qquad

Peer Reviewed By:

Name: \qquad
Signature: \qquad Date: \qquad

Internal Dosimetry Evaluation Form

NAME ${ }^{(10)(6)}$	SSN：${ }^{\text {（b）（6）}}$				
MODE OF INTAKE： Inhalation Ingestion Unknown	Injection Absorption Not applicable	INTAKE DATE OR PERIOD： 1／18／66 through 2／7／66，onsite 1／28／66			
SUMMARY OF EXPOSURE CONDITIONS： Radionuclides／Respiratory Class／Particle Size：${ }^{239} \mathrm{Pu} / 100 \%$ Class Y／1 $\mu \mathrm{m}$ AMAD Date or Period of Evaluated Data： 2 samples，2／7／66 and 6／1／66 Duration of Exposure：Unknown Location of Exposure：Camp Wilson，near Palomares，Spain					
EVALUATION DATA： Air Sampling Health Physics Survey Data Bioassay－Urinalysis Fecal Nasal Smears In Vivo	\square Attached \square Attached $\boxed{\text { Attached }}$ \square Attached \square Attached \square Attached	$\square \ln P$ $\square \ln P$ $\square \operatorname{In} P$ $\square \operatorname{In} P$ $\square \operatorname{In} P$ $\square \ln P$	cess acess cess cess acess cess	$\begin{aligned} & \text { Unavailable } \\ & \text { Q Unavailable } \\ & \square \text { Unavailable } \\ & \text { Q Unavailable } \\ & \boxtimes \text { Unavailable } \\ & \text { Q Unavailable } \end{aligned}$	
Medical Treatment： Skin Decontamination： Decorporation： Catharsis： Surgical excision：	\square Yes \square Yes \square Yes \square Yes	《 No Х No Х No 区 No	Date： Agent： Agent： Date：		Date： Date：

EVALUATION METHODOLOGY：
Assumptions：Acute inhalation intake of ${ }^{239} \mathrm{Pu}, 100 \%$ Class $\mathrm{Y}, 1 \mu \mathrm{~m}$ AMAD particle size on $1 / 28 / 66$
Code／Model used for：Intake Estimate：CINDY，Ver．1．4／JONES
Dose Estimate：CINDY，Ver．1．4／ICRP 30，Part 4，General Systemic Model

RESULTS SUMMARY

Estimated Intake Activity（pCi）： 68000
50 YR CEDE（rem）： 21 （ 0.21 Sv ）

Organ Dose Equivalent Summary Bone Surface Lung Liver Red Marrow Other Testes	$\begin{gathered} 50 \text { YR CDE (rem/Sv) } \\ 210 / 2.1 \\ 78 / 0.78 \\ 38 / 0.38 \\ 16 / 0.16 \\ 3.6 / 0.036 \\ 3 / 0.03 \end{gathered}$	
DOSE ASSESSOR：DATE：	PEER REVIEWER：	DATE：
Signature：	Signature：	
Print Name：	Print Name：	
SSN：	SSN：	

| RECOMMIENDATIONS： | | | |
| :--- | :--- | :--- | :--- | :--- |
| Additional Bioassay Required
 Suggested Sampling Frequency：
 Work Restrictions：
 N／A | \square Urinalysis | \square Fecal | \square In Vivo |

Suggested Sampling Frequency：
Work Restrictions：N／A

Internal Dosimetry Case Narrative

Identification:

Name:
 SSN:

Incidents:

Individual participated on site in response duties resulting from an accident involving three nuclear weapons at Palomares, Spain on January 17, 1966. Individual may have been exposed to weapons materials (primarily plutonium-239) by inhalation and ingestion from contaminated weapon and aircraft debris, lands, and vegetation. Primary activities included search, radiological monitoring, recovery of accident debris, and processing for disposal.

Previous Intake/Dose Assessments:

This assessment applies to Palomares accident activities only. No previous intakes or doses were considered.

Other Information:

None.
Radionuclide(s): ${ }^{239} \mathrm{Pu}$.

Assumptions/Basis/Data Sources:

Acute inhalation intake of Pu-239; 100% Class $\mathrm{Y} ; 1 \mu \mathrm{~m}$ AMAD particle size on $\mathrm{l} / 28 / 66$. The date is the midpoint of the period on station from $1 / 18 / 66$ to $2 / 7 / 66$.

Inhalation was assumed as the major route of entry because the primary contaminant was created by explosion and fire and deposited in sandy soil and on buildings and plants. Conditions were generally windy and significant activity was underway.

Dose was determined entirely from modeling intake based on the following urinalysis results for this individual. This individual's sample was identified for a follow-up analysis using alpha spectrometry after the initial gross alpha result was reviewed. That is, the initial urine sample for this individual was reprocessed radiochemically for alpha spectrometry. Results of the follow-up alpha spectrometry analysis are reported below and were used in preparing the dose estimate.

Sample	Analysis*	Sample Date	Result (pCi/day)	Error (pCi/day)	Included
$66-499$	G	$2 / 71 / 66$	1.66	0.700	\checkmark
$66-3271$	AS	$6 / 1 / 66$	0.047	0.047	\checkmark
$66-3271$	G	$6 / 1 / 66$	NR	NR	

* G means gross alpha counting; AS means alpha spectrometry; NR means no result reported.

Intakes and estimates of dose were prepared using CINDY Version 1.4 and LUDEP Version 2.05.
Intake was estimated using the Jones excretion model in CINDY and LUDEP.
Inhalation intake was estimated using the ICRP 66 respiratory tract model in LUDEP.
CINDY estimated dose derived using the ICRP 30, Part 4, General Systemic Model and weighting factors; and LUDEP used the recommendations of ICRP 60.

Modeling:

CINDY and LUDEP were used to estimate the intake and dose with the following results:

Model	Intake (pCi)	CEDE $(\mathrm{rem} / \mathrm{Sv})$
CINDY	68,000	$21 / 0.21$
LUDEP	191,000	$13 / 0.13$

Doses to individual organs and estimation of the effective dose equivalent using CNDY reported the following results:

Organ	Dose Equivalent (rem/Sv)	Weighting Factors	Weighted Organ Dose Equivalent (rem/Sv)
Testes	$3.0 \mathrm{E}+00 / 3.0 \mathrm{E}-02$	$2.5 \mathrm{E}-01$	$7.6 \mathrm{E}-01 / 7.6 \mathrm{E}-03$
Breast	$1.0 \mathrm{E}-04 / 1.0 \mathrm{E}-06$	$1.5 \mathrm{E}-01$	$1.5 \mathrm{E}-05 / 1.5 \mathrm{E}-07$
Red Marrow	$1.6 \mathrm{E}+01 / 1.6 \mathrm{E}-01$	$1.2 \mathrm{E}-01$	$2.0 \mathrm{E}+00 / 2.0 \mathrm{E}-02$
Lung	$7.8 \mathrm{E}+01 / 7.8 \mathrm{E}-01$	$1.2 \mathrm{E}-01$	$9.3 \mathrm{E}+00 / 9.3 \mathrm{E}-02$
Thyroid	$9.5 \mathrm{E}-05 / 9.5 \mathrm{E}-07$	$3.0 \mathrm{E}-02$	$2.8 \mathrm{E}-06 / 2.8 \mathrm{E}-08$
Bone Surface	$2.1 \mathrm{E}+02 / 2.1 \mathrm{E}+00$	$3.0 \mathrm{E}-02$	$6.4 \mathrm{E}+00 / 6.4 \mathrm{E}-02$
Liver	$3.8 \mathrm{E}+01 / 3.8 \mathrm{E}-01$	$6.0 \mathrm{E}-02$	$2.3 \mathrm{E}+00 / 2.3 \mathrm{E}-02$
Other	$3.6 \mathrm{E}+00 / 3.6 \mathrm{E}-02$	$6.0 \mathrm{E}-02$	$2.2 \mathrm{E}-01 / 2.2 \mathrm{E}-03$
Lower Large Intestine	$7.7 \mathrm{E}-03 / 7.7 \mathrm{E}-05$	$6.0 \mathrm{E}-02$	$4.6 \mathrm{E}-04 / 4.6 \mathrm{E}-06$
Upper Large Intestine	$2.6 \mathrm{E}-03 / 2.6 \mathrm{E}-05$	$6.0 \mathrm{E}-02$	$1.6 \mathrm{E}-04 / 1.6 \mathrm{E}-06$
Small Intestine	$5.3 \mathrm{E}-04 / 5.3 \mathrm{E}-06$	$6.0 \mathrm{E}-02$	$3.2 \mathrm{E}-05 / 3.2 \mathrm{E}-07$
Effective Dose Equivalent			$2.1 \mathrm{E}+01 / 2.1 \mathrm{E}-01$

One urine sample was analyzed by gross alpha counting only, and the other was analyzed by both gross alpha counting and alpha spectrometry. For the sample analyzed with both methods, the gross alpha analysis was not included in the modeling since an alpha spectrometry result was available for the same sample. The sample analyzed by gross alpha counting only was not included in the analysis since it was an on-site sample with a result $>0.1 \mathrm{pCi}$, leading to a suspicion of sample contamination. The result was fit using CINDY and the Jones excretion model, to estimate an intake ($68,000 \mathrm{pCi}$), organ doses, and a CEDE ($21 \mathrm{rem} / 0.21 \mathrm{~Sv}$; ICRP-30) as shown above. LUDEP was also used to estimate an intake of $191,000 \mathrm{pCi}$ and a CEDE (ICRP-60) of $13 \mathrm{rem}(0.13 \mathrm{~Sv}$).

Conclusion:

Based on the results of intake estimates and dose calculations, this individual received an estimated intake of about $68,000 \mathrm{pCi}$ of ${ }^{239} \mathrm{Pu}$ resulting in a 50 -year committed effective dose equivalent of 21 rem (0.21 Sv). That dose is more than the cumulative dose (7 rem) from a lifetime (70 years) of exposure at the current level (0.100 rem) for members of the public. It is less than half the working lifetime limit of 50 rem recommended by the National Council on Radiation Protection and Measurements (NCRP). Serious health effects are not associated with that dose level.

Prepared By:

Name: \qquad
Signature: \qquad Date: \qquad

Peer Reviewed By:

Name: \qquad
Signature: \qquad Date: \qquad

Internal Dosimetry Evaluation Form

\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{NAME:(10) (6)} \& SSN: (1) (6) \\
\hline \begin{tabular}{cl}
\hline MODE OF INTAKE: \& \\
\& \begin{tabular}{l}
Inhalation \\
\(\square\)
\end{tabular} \\
\& \(\square\) Injection \\
\& \(\square\) Unknown \\
Absorption \\
\& \(\square\) Not applicable
\end{tabular} \& INTAKE DA 1/20/66 throug 1/29/66 \& TE OR PERIOD: 2/7/66, onsite \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
SUMMARY OF EXPOSURE CONDITIONS: \\
Radionuclides/Respiratory Class/Particle Size: \({ }^{239} \mathrm{P} u / 100 \%\) Class Y/1 \(\mu \mathrm{m}\) AMAD \\
Date or Period of Evaluated Data: 2 samples, 2/7/66 and 6/1/66 \\
Duration of Exposure: Unknown \\
Location of Exposure: Camp Wilson, near Palomares, Spain
\end{tabular}} \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{llll}
EVALUATION DATA: \& \& \\
\begin{tabular}{llll}
Air Sampling
\end{tabular} \& \(\square\) Attached \& \(\square\) In Process \& Q Unavailable \\
Health Physics Survey Data \& \(\square\) Attached \& \(\square\) In Process \& Q Unavailable \\
Bioassay - Urinalysis \& \(\boxed{4 t t a c h e d ~}\) \& \(\square\) In Process \& \(\square\) Unavailable \\
Fecal \& \(\square\) Attached \& \(\square\) In Process \& Q Unavailable \\
Nasal Smears \& \(\square\) Attached \& \(\square\) In Process \& Q Unavailable \\
In Vivo \& \(\square\) Attached \& \(\square\) In Process \& Q Unavailable
\end{tabular}} \\
\hline \& \begin{tabular}{ll}
Х No \& Date: \\
Х No \& Agent: \\
Х No \& Agent: \\
区 No \& Date:
\end{tabular} \& \begin{tabular}{l}
\(\qquad\) \\
Date:
\end{tabular} \\
\hline EVALUATION METHODOLOGY:
Assumptions: Acute inhalation intake of \({ }^{239} \mathrm{Pu}, 100 \%\)
Code/Model used for:

Intake Estimate: CINDY, V

Dose Estimate: CINDY, V \& \begin{tabular}{l}
lass $\mathrm{Y}, 1 \mu \mathrm{~m}$ AMA

er. 1.4/JONES

er. 1.4/ICRP 30, Pa

 \&

D particle size on 1/29/66

t 4, General Systemic Model
\end{tabular}

\hline \multicolumn{3}{|l|}{| RESULTS SUMMARY | |
| :--- | :---: |
| Estimated Intake Activity (pCi): 210000 | |
| 50 YR CEDE (rem) : 65 (0.65 Sv) | |
| Organ Dose Equivalent Summary | $\mathbf{5 0 ~ Y R ~ C D E ~ (r e m / S v) ~}$ |
| Bone Surface | $650 / 6.5$ |
| Lung | $240 / 2.4$ |
| Liver | $120 / 1.2$ |
| Red Marrow | $51 / 0.51$ |
| Other | $11 / 0.11$ |
| Testes | $9.4 / 0.094$ |}

\hline | DOSE ASSESSOR: |
| :--- |
| DATE: \qquad |
| Signature: \qquad |
| Print Name: \qquad |
| SSN: | \& | PEER REVII |
| :--- |
| Signature: |
| Print Nam |
| SSN: \qquad | \& | WER: |
| :--- |
| DAT |

\hline
\end{tabular}

RECOMMENDATIONS:				
Additional Bioassay Required Suggested Sampling Frequency: Work Restrictions:\quad N/A		\square Urinalysis	\square Fecal	\square In Vivo

Internal Dosimetry Case Narrative

Identification:

Name:
SSN:

Incidents:

Individual participated on site in response duties resulting from an accident involving three nuclear weapons at Palomares, Spain on January 17, 1966. Individual may have been exposed to weapons materials (primarily plutonium-239) by inhalation and ingestion from contaminated weapon and aircraft debris, lands, and vegetation. Primary activities included search, radiological monitoring, recovery of accident debris, and processing for disposal.

Previous Intake/Dose Assessments:

This assessment applies to Palomares accident activities only. No previous intakes or doses were considered.

Other Information:

None.
Radionuclide(s): ${ }^{239} \mathrm{Pu}$.

Assumptions/Basis/Data Sources:

Acute inhalation intake of Pu-239; 100\% Class Y; $1 \mu \mathrm{~m}$ AMAD particle size on $1 / 29 / 66$. The date is the midpoint of the period on station from $1 / 20 / 66$ to $2 / 7 / 66$.

Inhalation was assumed as the major route of entry because the primary contaminant was created by explosion and fire and deposited in sandy soil and on buildings and plants. Conditions were generally windy and significant activity was underway.

Dose was determined entirely from modeling intake based on the following urinalysis results for this individual. This individual's sample was identified for a follow-up analysis using alpha spectrometry after the initial gross alpha result was reviewed. That is, the initial urine sample for this individual was reprocessed radiochemically for alpha spectrometry. Results of the follow-up alpha spectrometry analysis are reported below and were used in preparing the dose estimate.

Sample	Analysis*	Sample Date	Result (pCi/day)	Error (pCi/day)	Included
$66-464$	G	$2 / 7 / 66$	0.500	0.350	
$66-3270$	AS	$6 / 1 / 66$	0.146	0.147	\checkmark
$66-3270$	G	$6 / 1 / 66$	NR	NR	

* G means gross alpha counting; AS means alpha spectrometry.

Intakes and estimates of dose were prepared using CINDY Version 1.4 and LUDEP Version 2.05.
Intake was estimated using the Jones excretion model in CINDY and LUDEP.
Inhalation intake was estimated using the ICRP 66 respiratory tract model in LUDEP.
CINDY estimated dose derived using the ICRP 30, Part 4, General Systemic Model and weighting factors; and LUDEP used the recommendations of ICRP 60.

Modeling:
CINDY and LUDEP were used to estimate the intake and dose with the following results:

Model	Intake (pCi)	CEDE $(\mathrm{rem} / \mathrm{Sv})$
CINDY	210,000	$65 / 0.65$
LUDEP	591,000	$42 / 0.42$

Doses to individual organs and estimation of the effective dose equivalent using CINDY reported the following results:

Organ	Dose Equivalent $($ rem/Sv)	Weighting Factors	Weighted Organ Dose Equivalent (rem/Sv)
Testes	$9.4 \mathrm{E}+00 / 9.4 \mathrm{E}-02$	$2.5 \mathrm{E}-01$	$2.3 \mathrm{E}+00 / 2.3 \mathrm{E}-02$
Breast	$3.1 \mathrm{E}-04 / 3.1 \mathrm{E}-06$	$1.5 \mathrm{E}-01$	$4.7 \mathrm{E}-05 / 4.7 \mathrm{E}-05$
Red Marrow	$5.1 \mathrm{E}+01 / 5.1 \mathrm{E}-01$	$1.2 \mathrm{E}-01$	$6.1 \mathrm{E}+00 / 6.1 \mathrm{E}-02$
Lung	$2.4 \mathrm{E}+02 / 2.4 \mathrm{E}+00$	$1.2 \mathrm{E}-01$	$2.9 \mathrm{E}+01 / 2.9 \mathrm{E}-01$
Thyroid	$2.9 \mathrm{E}-04 / 2.9 \mathrm{E}-06$	$3.0 \mathrm{E}-02$	$8.8 \mathrm{E}-06 / 8.8 \mathrm{E}-06$
Bone Surface	$6.5 \mathrm{E}+02 / 6.5 \mathrm{E}+00$	$3.0 \mathrm{E}-02$	$2.0 \mathrm{E}+01 / 2.0 \mathrm{E}-01$
Liver	$1.2 \mathrm{E}+02 / 1.2 \mathrm{E}+00$	$6.0 \mathrm{E}-02$	$7.0 \mathrm{E}+007 / .0 \mathrm{E}-02$
Other	$1.1 \mathrm{E}+01 / 1.1 \mathrm{E}-01$	$6.0 \mathrm{E}-02$	$6.7 \mathrm{E}-0167 \mathrm{E}-03$
Lower Large Intestine	$2.4 \mathrm{E}-02 / 2.4 \mathrm{E}-04$	$6.0 \mathrm{E}-02$	$1.4 \mathrm{E}-03 / 1.4 \mathrm{E}-05$
Upper Large Intestine	$8.0 \mathrm{E}-03 / 8.0 \mathrm{E}-05$	$6.0 \mathrm{E}-02$	$4.8 \mathrm{E}-04 / 4.8 \mathrm{E}-06$
Small Intestine	$1.6 \mathrm{E}-03 / 1.6 \mathrm{E}-05$	$6.0 \mathrm{E}-02$	$9.8 \mathrm{E}-07 / 9.8 \mathrm{E}-07$
Effective Dose Equivalent		$6.5 \mathrm{E}+01 / 6.5 \mathrm{E}-01$	

One urine sample was analyzed by gross alpha counting only, and the other was analyzed by both gross alpha counting and alpha spectrometry. For the sample analyzed with both methods, the gross alpha analysis was not included in the modeling since no result was reported and an alpha spectrometry result was available for the same sample. The sample analyzed by gross alpha counting only was not included in the analysis since it was an on-site sample with a result $>0.1 \mathrm{pCi}$, leading to a suspicion of sample contamination. The result was fit using CINDY and the Jones excretion model, to estimate an intake $(210,000 \mathrm{pCi})$, organ doses, and a CEDE ($65 \mathrm{rem} / 0.65 \mathrm{~Sv}$; ICRP-30) as shown above. LUDEP was also used to estimate an intake of $591,000 \mathrm{pCi}$ and a CEDE (ICRP-60) of 42 rem (0.42 Sv).

Conclusion:

Based on the results of intake estimates and dose calculations, this individual received an estimated intake of about $210,000 \mathrm{pCi}$ of ${ }^{239} \mathrm{Pu}$ resulting in a 50 -year committed effective dose equivalent of 65 rem (0.65 Sv). That dose is more than the cumulative dose (7 rem) from a lifetime (70 years) of exposure at the current level (0.100 rem) for members of the public. It is more than the working lifetime limit of 50 rem recommended by the National Council on Radiation Protection and Measurements (NCRP). Serious health effects are not normally associated with these dose levels. However, follow-up urine sampling should be considered to provide additional assessment of the exposure.

Prepared By:

Name: \qquad
Signature: \qquad Date: \qquad

Peer Reviewed By:

Name: \qquad
Signature: \qquad Date: \qquad

ONE TIME FORM. OBSOLETE AFTER 30 JUN 66. (MCGSCPF, RAG, 4 APR 66)

FEB 101966

मoday uo!jenjenヨ əsoa

Internal Dosimetry Evaluation Form

NAME: ${ }^{(10)}$ (6)			ATE OR PERIOD: 2/26/66, onsite	
	\square Injection \square Absorption \square Not applicable	INTAKE DATE OR PERIOD: 2/5/66 through 2/26/66, onsite 2/15/66		
SUMMARY OF EXPOSURE CONDITIONS: Radionuclides/Respiratory Class/Particle Size: ${ }^{239} \mathrm{Pu} / 100 \%$ Class Y/1 $\mu \mathrm{m}$ AMAD Date or Period of Evaluated Data: 1 sample, 2/26/66 Duration of Exposure: Unknown Location of Exposure: Camp Wilson, near Palomares, Spain				
EVALUATION DATA:				
Medical Treatment: Skin Decontamination: Decorporation: Catharsis: Surgical excision:	$\square \mathrm{Yes}$ $\square \mathrm{Yes}$ $\square \mathrm{Yes}$ $\square \mathrm{Yes}$	《 No Date: \boxtimes No Agent Q No Agent: No Date:		Date: Date:

EVALUATION METHODOLOGY:

Assumptions: Acute inhalation intake of ${ }^{239} \mathrm{Pu}, 100 \%$ Class $\mathrm{Y}, 1 \mu \mathrm{~m}$ AMAD particle size on $2 / 15 / 66$
Code/Model used for: Intake Estimate: CINDY, Ver. 1.4/JONES
Dose Estimate: CINDY, Ver. 1.4/ICRP 30, Part 4, General Systemic Model
RESULTS SUMMARY
Estimated Intake Activity (pCi): 7700
50 YR CEDE (rem) : 2.4 (0.024 Sv)

Organ Dose Equivalent Summary	50 YR CDE (rem/Sv)
Bone Surface	$24 / 0.24$
Lung	$8.8 / 0.088$
Liver	$4.3 / 0.043$
Red Marrow	$1.9 / 0.019$
Other	$0.41 / 0.0041$
Testes	$0.34 / 0.0034$

DOSE ASSESSOR: Signature:	DATE:	PEER REVIEWER: Signature: \qquad	DATE:
			8
Print Name:		Print Name:	
SSN:		SSN:	

RECOMMENDATIONS:

Additional Bioassay Required
Suggested Sampling Frequency:Urinalysis \square Fecal \square In Vivo

Work Restrictions: N/A N/A

[^0]Internal Dosimetry Case Narrative

Identification:

Name:

SSN:

Incidents:

Individual participated on site in response duties resulting from an accident involving three nuclear weapons at Palomares, Spain on January 17, 1966. Individual may have been exposed to weapons materials (primarily plutonium-239) by inhalation and ingestion from contaminated weapon and aircraft debris, lands, and vegetation. Primary activities included search, radiological monitoring, recovery of accident debris, and processing for disposal.

Previous Intake/Dose Assessments:

This assessment applies to Palomares accident activities only. No previous intakes or doses were considered.

Other Information:

None.
Radionuclide(s): ${ }^{239} \mathrm{Pu}$.

Assumptions/Basis/Data Sources:

Acute inhalation intake of Pu-239; 100% Class $\mathrm{Y} ; 1 \mu \mathrm{~m}$ AMAD particle size on $2 / 15 / 66$. The date is the midpoint of the period on station from $2 / 5 / 66$ to $2 / 26 / 66$.

Inhalation was assumed as the major route of entry because the primary contaminant was created by explosion and fire and deposited in sandy soil and on buildings and plants. Conditions were generally windy and significant activity was underway.

Dose was determined entirely from modeling intake based on the following urinalysis results for this individual. This individual's sample was identified for a follow-up analysis using alpha spectrometry after the initial gross alpha result was reviewed. That is, the initial urine sample for this individual was reprocessed radiochemically for alpha spectrometry. Results of the follow-up alpha spectrometry analysis are reported below and were used in preparing the dose estimate.

Sample	Analysis*	Sample Date	Result (pCi/day)	Error (pCi/day)	Included
$66-1430$	AS	$2 / 26 / 66$	NR	NR	
$66-1430$	G	$2 / 26 / 66$	ND	ND	\checkmark
*G means gross alpha counting; AS means alpha spectrometry.					

Intakes and estimates of dose were prepared using CINDY Version 1.4 and LUDEP Version 2.05.
Intake was estimated using the Jones excretion model in CINDY and LUDEP.
Inhalation intake was estimated using the ICRP 66 respiratory tract model in LUDEP.
CINDY estimated dose derived using the ICRP 30, Part 4, General Systemic Model and weighting factors; and LUDEP used the recommendations of ICRP 60.

Modeling:

CINDY and LUDEP were used to estimate the intake and dose with the following results:

Model	Intake (pCi)	CEDE $(\mathrm{rem} / \mathrm{Sv})$
CINDY	7,700	$2.4 / 0.024$
LUDEP	38,300	$2.7 / 0.027$

Doses to individual organs and estimation of the effective dose equivalent using CINDY reported the following results:

Organ	Dose Equivalent $($ rem/Sv)	Weighting Factors	Weighted Organ Dose Equivalent $($ rem/Sv
Testes	$3.4 \mathrm{E}-01 / 3.4 \mathrm{E}-03$	$2.5 \mathrm{E}-01$	$8.6 \mathrm{E}-02 / 8.6 \mathrm{E}-04$
Breast	$1.1 \mathrm{E}-05 / 1.1 \mathrm{E}-07$	$1.5 \mathrm{E}-01$	$1.7 \mathrm{E}-06 / 1.7 \mathrm{E}-08$
Red Marrow	$1.9 \mathrm{E}+00 / 1.9 \mathrm{E}-02$	$1.2 \mathrm{E}-01$	$2.2 \mathrm{E}-01 / 2.2 \mathrm{E}-03$
Lung	$8.8 \mathrm{E}+00 / 8.8 \mathrm{E}-02$	$1.2 \mathrm{E}-01$	$1.1 \mathrm{E}+00 / 1.1 \mathrm{E}-02$
Thyroid	$1.1 \mathrm{E}-05 / 1.1 \mathrm{E}-07$	$3.0 \mathrm{E}-02$	$3.2 \mathrm{E}-07 / 3.2 \mathrm{E}-09$
Bone Surface	$2.4 \mathrm{E}+01 / 2.4 \mathrm{E}-01$	$3.0 \mathrm{E}-02$	$7.2 \mathrm{E}-01 / 7.2 \mathrm{E}-03$
Liver	$4.3 \mathrm{E}+00 / 4.3 \mathrm{E}-02$	$6.0 \mathrm{E}-02$	$2.6 \mathrm{E}-01 / 2.6 \mathrm{E}-03$
Other	$4.1 \mathrm{E}-01 / 4.1 \mathrm{E}-03$	$6.0 \mathrm{E}-02$	$2.4 \mathrm{E}-02 / 2.4 \mathrm{E}-04$
Lower Large Intestine	$8.7 \mathrm{E}-04 / 8.7 \mathrm{E}-06$	$6.0 \mathrm{E}-02$	$5.2 \mathrm{E}-05 / 5.2 \mathrm{E}-07$
Upper Large Intestine	$2.9 \mathrm{E}-04 / 2.9 \mathrm{E}-06$	$6.0 \mathrm{E}-02$	$1.8 \mathrm{E}-051.1 .8 \mathrm{E}-07$
Small Intestine	$6.0 \mathrm{E}-05 / 6.0 \mathrm{E}-07$	$6.0 \mathrm{E}-02$	$3.6 \mathrm{E}-06 / 3.6 \mathrm{E}-08$
Effective Dose Equivalent			$2.4 \mathrm{E}+00 / 2.4 \mathrm{E}-02$

One urine sample was analyzed by gross alpha counting and alpha spectrometry. The alpha spectrometry analysis was not included in the modeling since no result was reported. The gross alpha counting result was reported as No Detectable Activity. A value of 0.009 pCi was used to represent this outcome. The result was fit using CINDY and the Jones excretion model, to estimate an intake ($7,700 \mathrm{pCi}$), organ doses, and a CEDE ($2.4 \mathrm{rem} / 0.024 \mathrm{~Sv}$; ICRP-30) as shown above. LUDEP was also used to estimate an intake of $38,300 \mathrm{pCi}$ and a CEDE (ICRP-60) of 2.7 rem (0.027 Sv).

Conclusion:

Based on the results of intake estimates and dose calculations, this individual received an estimated intake of about $7,700 \mathrm{pCi}$ of ${ }^{239} \mathrm{Pu}$ resulting in a 50 -year committed effective dose equivalent of 2.4 rem (0.024 Sv). That dose is less than the cumulative dose (7 rem) from a lifetime (70 years) of exposure at the
current level (0.100 rem) for members of the public. It is far less than the working lifetime limit of 50 rem recommended by the National Council on Radiation Protection and Measurements (NCRP). Serious health effects are not associated with that dose level.

Prepared By:

Name: \qquad
Signature: \qquad

Peer Reviewed By:

Name: \qquad
Signature: \qquad Date: \qquad

Internal Dosimetry Evaluation Form

NAME: ${ }^{(15)}$ (6)	SSN: ${ }^{(10)}{ }^{(6)}$			
	Injection Absorption Not applicable	INTAKE DATE OR PERIOD: 1/18/66 through $1 / 31 / 66$, onsite 1/24/66		
SUMMARY OF EXPOSURE CONDITIONS: Radionuclides/Respiratory Class/Particle Size: ${ }^{239} \mathrm{Pu} / 100 \%$ Class Y/1 $\mu \mathrm{m}$ AMAD Date or Period of Evaluated Data: 4 samples, 1/21/66 through 6/2/66 Duration of Exposure: Unknown Location of Exposure: Camp Wilson, near Palomares, Spain				
EVALUATION DATA: Air Sampling Health Physics Survey Data Bioassay - Urinalysis Fecal $\begin{array}{lll}\square \text { Attached } & \square \text { In Process } & \boxtimes \text { Unavailable } \\ \square \text { Attached } & \square \text { In Process } & \text { Q Unavailable } \\ \boxtimes \text { Attached } & \square \text { In Process } & \square \text { Unavailable } \\ \square \text { Attached } & \square \text { In Process } & \text { Q Unavailable } \\ \square \text { Attached } & \square \text { In Process } & \text { U Unavailable } \\ \square \text { Attached } & \square \text { In Process } & \boxed{\text { Unavailable }}\end{array}$				
Medical Treatment: Skin Decontamination: Decorporation: Catharsis: Surgical excision:	$\square \mathrm{Yes}$ $\square \mathrm{Yes}$ $\square \mathrm{Yes}$ $\square \mathrm{Yes}$	\boxtimes No Date: \boxtimes No Agent 区 No Agent 区 No Date:	\qquad	Date: Date:

EVALUATION METHODOLOGY:

Assumptions: Acute inhalation intake of	
Code/Model used for:	
	Intake Estimate: CINDY, Ver. 1.4/JONES
	Dose Estimate: CINDY, Ver. 1.4/ICRP 30, Part 4, General Systemic Model

RESULTS SUMMARY
Estimated Intake Activity (pCi): 240,000
50 YR CEDE (rem) : 74 (0.74 Sv)

Organ Dose Equivalent Summary	50 YR CDE (rem/Sv)
Bone Surface	$750 / 7.5$
Lung	$270 / 2.7$
Liver	$130 / 1.3$
Red Marrow	$58 / 0.58$
Other	$13 / 0.13$
Testes	$11 / 0.11$

DOSE ASSESSOR:	DATE:	PEER REVIEWER: Signature: \qquad	DATE:
Signature:			
Print Name:		Print Name:	
SSN:		SSN:	

RECOMMENDATIONS:

Additional Bioassay Required
Suggested Sampling Frequency:
Work Restrictions:
\square UrinalysisFecalIn Vivo

[^1]
Internal Dosimetry Case Narrative

Identification:

Name:

SSN:

Incidents:

Individual participated on site in response duties resulting from an accident involving three nuclear weapons at Palomares, Spain on January 17, 1966. Individual may have been exposed to weapons materials (primarily plutonium-239) by inhalation and ingestion from contaminated weapon and aircraft debris, lands, and vegetation. Primary activities included search, radiological monitoring, recovery of accident debris, and processing for disposal.

Previous Intake/Dose Assessments:

This assessment applies to Palomares accident activities only. No previous intakes or doses were considered.

Other Information:
None.
Radionuclide(s): ${ }^{239} \mathrm{Pu}$.

Assumptions/Basis/Data Sources:

Acute inhalation intake of Pu-239; 100% Class $\mathrm{Y} ; 1 \mu \mathrm{~m}$ AMAD particle size on $1 / 24 / 66$. The date is the midpoint of the period on station from $1 / 18 / 66$ to $1 / 31 / 66$.

Inhalation was assumed as the major route of entry because the primary contaminant was created by explosion and fire and deposited in sandy soil and on buildings and plants. Conditions were generally windy and significant activity was underway.

Dose was determined entirely from modeling intake based on the following urinalysis results for this individual. This individual's sample was identified for a follow-up analysis using alpha spectrometry after the initial gross alpha result was reviewed. That is, the initial urine sample for this individual was reprocessed radiochemically for alpha spectrometry. Results of the follow-up alpha spectrometry analysis are reported below and were used in preparing the dose estimate.

Sample	Analysis*	Sample Date	Result (pCi/day)	Error (pCi/day)	Included
$66-267$	G	$1 / 21 / 66$	NR	NR	
$66-409$	G	$2 / 2 / 66$	1.02	0.750	
$66-568$	G	$2 / 4 / 66$	1.86	0.089	
$66-3407$	AS	$6 / 2 / 66$	0.168	0.089	\checkmark
$66-3407$	G	$6 / 2 / 66$	NR	NR	

[^2]Intakes and estimates of dose were prepared using CINDY Version 1.4 and LUDEP Version 2.05.
Intake was estimated using the Jones excretion model in CINDY and LUDEP.
Inhalation intake was estimated using the ICRP 66 respiratory tract model in LUDEP.
CINDY estimated dose derived using the ICRP 30, Part 4, General Systemic Model and weighting factors; and LUDEP used the recommendations of ICRP 60.

Modeling:

CINDY and LUDEP were used to estimate the intake and dose with the following results:

Model	Intake (pCi)	CEDE (rem/Sv)
CINDY	240,000	$74 / 0.74$
LUDEP	680,000	$48 / 0.48$

Doses to individual organs and estimation of the effective dose equivalent using CINDY reported the following results:

Organ	Dose Equivalent $($ rem $/ S v)$	Weighting Factors	Weighted Organ Dose Equivalent rem/Sv)
Testes	$1.1 \mathrm{E}+01 / 1.1 \mathrm{E}-01$	$2.5 \mathrm{E}-01$	$2.7 \mathrm{E}+00 / 2.7 \mathrm{E}-02$
Breast	$3.6 \mathrm{E}-04 / 3.6 \mathrm{E}-06$	$1.5 \mathrm{E}-01$	$5.3 \mathrm{E}-05 / 5.3 \mathrm{E}-07$
Red Marrow	$5.8 \mathrm{E}+01 / 5.8 \mathrm{E}-01$	$1.2 \mathrm{E}-01$	$6.9 \mathrm{E}+00 / 6.9 \mathrm{E}-02$
Lung	$2.7 \mathrm{E}+02 / 2.7 \mathrm{E}+00$	$1.2 \mathrm{E}-01$	$3.3 \mathrm{E}+01 / 3.3 \mathrm{E}-01$
Thyroid	$3.3 \mathrm{E}-04 / 3.3 \mathrm{E}-06$	$3.0 \mathrm{E}-02$	$1.0 \mathrm{E}-05 / 1.0 \mathrm{E}-07$
Bone Surface	$7.5 \mathrm{E}+02 / 7.5 \mathrm{E}+00$	$3.0 \mathrm{E}-02$	$2.2 \mathrm{E}+01 / 2.2 \mathrm{E}-01$
Liver	$1.3 \mathrm{E}+02 / 1.3 \mathrm{E}+00$	$6.0 \mathrm{E}-02$	$8.0 \mathrm{E}+00 / 8.0 \mathrm{E}-02$
Other	$1.3 \mathrm{E}+01 / 3 \mathrm{E}-01$	$6.0 \mathrm{E}-02$	$7.6 \mathrm{E}+00 / 7.6 \mathrm{E}-02$
Lower Large Intestine	$2.7 \mathrm{E}-02 / 2.7 \mathrm{E}-04$	$6.0 \mathrm{E}-02$	$1.6 \mathrm{E}-03 / 1.6 \mathrm{E}-05$
Upper Large Intestine	$9.1 \mathrm{E}-03 / 9.1 \mathrm{E}-05$	$6.0 \mathrm{E}-02$	$5.5 \mathrm{E}-04 / 5.5 \mathrm{E}-06$
Small Intestine	$1.9 \mathrm{E}-03 / 1.9 \mathrm{E}-05$	$6.0 \mathrm{E}-02$	$1.1 \mathrm{E}-04 / 1.1 \mathrm{E}-06$
Effective Dose Equivalent		$7.4 \mathrm{E}+01 / 7.4 \mathrm{E}-01$	

Three urine samples were analyzed by gross alpha counting only, and the fourth was analyzed by both gross alpha counting and alpha spectrometry. For the sample analyzed with both methods, the gross alpha analysis was not included in the modeling since no result was reported and an alpha spectrometry result was available for the same sample. One of the samples analyzed by gross alpha counting only was not included in the analysis since no result was reported. The other gross alpha results were excluded from the analysis because they did not fit the expected pattern of plutonium excretion and because they may
have been contaminated during sample collection on the site . have been contaminated during sample collection on the site. The remaining result was fit using CINDY and the Jones excretion model, to estimate an intake ($240,000 \mathrm{pCi}$), organ doses, and a CEDE (74 rem/ 0.74 Sv ; ICRP-30) as shown above. LUDEP was also used to estimate an intake of $680,000 \mathrm{pCi}$ and a CEDE (ICRP-60) of $48 \mathrm{rem}(0.48 \mathrm{~Sv})$.

When all results were included in a separate evaluation, CINDY produced estimated intake and CEDE of $970,000 \mathrm{pCi}$ and $300 \mathrm{rem}(3.0 \mathrm{~Sv}$). LUDEP estimated intake and CEDE at $4,100,000 \mathrm{pCi}$ and 290 rem (2.9 Sv).

Conclusion:

Based on the results of intake estimates and dose calculations, this individual received an estimated intake of about $240,000 \mathrm{pCi}$ of ${ }^{239} \mathrm{Pu}$ resulting in a 50 -year committed effective dose equivalent of $74 \mathrm{rem} \mathrm{(} 0.74$ Sv). That dose is more than the cumulative dose (7 rem) from a lifetime (70 years) of exposure at the current level (0.100 rem) for members of the public. It is more than the working lifetime limit of 50 rem recommended by the National Council on Radiation Protection and Measurements (NCRP). These doses are significant, although they are based in part, on samples collected on-site and potentially contaminated.
However, follow-up urine sampling should be considered However, follow-up urine sampling should be considered to provide additional assessment of the
exposure.

Prepared By:

Name: \qquad
Signature: \qquad Date: \qquad

Peer Reviewed By:

Name: \qquad
Signature: \qquad Date: \qquad

[^3]

$\therefore . \therefore 86$ TAC hose. Apo NY 09012
\qquad
$409 \# 4$

SN.

/ BOTTLE \qquad
\qquad
\qquad
\qquad
AMT USED 200 Mc NITRIC ACID 50 ML

Internal Dosimetry Evaluation Form

NAME：${ }^{(1))^{(6)}}$			SSN：［（b）（6）	
	\square Injection \square Absorption \square Not applicable	INTAKE D 1／18／66 throu 2／8／66	TE OR PERIOD： h $3 / 1 / 66$ ，onsite	
SUMIMARY OF EXPOSURE CONDITIONS： Radionuclides／Respiratory Class／Particle Size：${ }^{239} \mathrm{Pu} / 100 \%$ Class Y／1 $\mu \mathrm{m}$ AMAD Date or Period of Evaluated Data： 1 sample，3／1／66 Duration of Exposure：Unknown Location of Exposure：Camp Wilson，near Palomares，Spain				
EVALUATION DATA： Air Sampling Health Physics Survey Data Bioassay－Urinalysis Fecal Nasal Smears In Vivo	\square Attached \square Attached \boxtimes Attached \square Attached \square Attached \square Attached	In Process In Process In Process In Process In Process In Process	区 Unavailable 区 Unavailable \square Unavailable 区 Unavailable 区 Unavailable 区 Unavailable	
Medical Treatment： Skin Decontamination： Decorporation： Catharsis： Surgical excision：	\square Yes \square Yes \square Yes \square Yes	区 No Date： 区 No Agent： 区 No Agent： 区 No Date：		Date： Date：

EVALUATION METHODOLOGY：
Assumptions：Acute inhalation intake of ${ }^{239} \mathrm{Pu}, 100 \%$ Class $\mathrm{Y}, 1 \mu \mathrm{~m}$ AMAD particle size on 2／8／66
$\begin{array}{ll}\text { Code／Model used for：} & \text { Intake Estimate：CINDY，Ver．1．4／JONES } \\ & \text { Dose Estimate：} \\ & \text { CINDY，Ver．1．4／ICRP 30，Part 4，General Systemic Model }\end{array}$
RESULTS SUMIMARY
Estimated Intake Activity（pCi）： 270000
50 YR CEDE（rem）： 83 （ 0.83 Sv ）

RECOMMIENDATIONS：

Additional Bioassay Required				
Suggested Sampling Frequency：				
Work Restrictions：	N／A	\square Urinalysis	\square Fecal	\square In Vivo

Internal Dosimetry Case Narrative

Identification:

Incidents:

Individual participated on site in response duties resulting from an accident involving three nuclear weapons at Palomares, Spain on January 17, 1966. Individual may have been exposed to weapons materials (primarily plutonium-239) by inhalation and ingestion from contaminated weapon and aircraft debris, lands, and vegetation. Primary activities included search, radiological monitoring, recovery of accident debris, and processing for disposal.

Previous Intake/Dose Assessments:

This assessment applies to Palomares accident activities only. No previous intakes or doses were considered.

Other Information:

None.
Radionuclide(s): ${ }^{239} \mathrm{Pu}$.

Assumptions/Basis/Data Sources:

Acute inhalation intake of Pu-239; 100\% Class Y; $1 \mu \mathrm{~m}$ AMAD particle size on 2/8/66. The date is the midpoint of the period on station from 1/18/66 to 3/1/66.

Inhalation was assumed as the major route of entry because the primary contaminant was created by explosion and fire and deposited in sandy soil and on buildings and plants. Conditions were generally windy and significant activity was underway.

Dose was determined entirely from modeling intake based on the following urinalysis results for this individual. This individual's sample was identified for a follow-up analysis using alpha spectrometry after the initial gross alpha result was reviewed. That is, the initial urine sample for this individual was reprocessed radiochemically for alpha spectrometry. Results of the follow-up alpha spectrometry analysis are reported below and were used in preparing the dose estimate.

Sample	Analysis*	Sample Date	Result (pCi/day)	Error (pCi/day)	Included
$66-1849$	AS	$3 / 1 / 66$	0.259	0.151	\checkmark
$66-1849$	G	$3 / 1 / 66$	0.924	0.249	
G means gross alpha counting; AS means alpha spectrometry.					

Intakes and estimates of dose were prepared using CINDY Version 1.4 and LUDEP Version 2.05.
Intake was estimated using the Jones excretion model in CINDY and LUDEP.
Inhalation intake was estimated using the ICRP 66 respiratory tract model in LUDEP.
CINDY estimated dose derived using the ICRP 30, Part 4, General Systemic Model and weighting factors; and LUDEP used the recommendations of ICRP 60.

Modeling:

CINDY and LUDEP were used to estimate the intake and dose with the following results:

Model	Intake (pCi)	CEDE $(\mathrm{rem} / \mathrm{Sv}$)
CINDY	270,000	$83 / 0.83$
LUDEP	$1,110,000$	$78 / 0.78$

Doses to individual organs and estimation of the effective dose equivalent using CINDY reported the following results:

Organ	Dose Equivalent $($ rem/Sv)	Weighting Factors	Weighted Organ Dose Equivalent $($ rem $/ S v)$
Testes	$1.2 \mathrm{E}+01 / 1.2 \mathrm{E}-01$	$2.5 \mathrm{E}-01$	$3.0 \mathrm{E}+00 / 3.0 \mathrm{E}-02$
Breast	$4.0 \mathrm{E}-04 / 4.0 \mathrm{E}-06$	$1.5 \mathrm{E}-01$	$6.0 \mathrm{E}-05 / 6.0 \mathrm{E}-07$
Red Marrow	$6.5 \mathrm{E}+01 / 6.5 \mathrm{E}-01$	$1.2 \mathrm{E}-01$	$7.8 \mathrm{E}+00 / 7.8 \mathrm{E}-02$
Lung	$3.1 \mathrm{E}+02 / 3.1 \mathrm{E}+00$	$1.2 \mathrm{E}-01$	$3.7 \mathrm{E}+01 / 3.7 \mathrm{E}-01$
Thyroid	$3.8 \mathrm{E}-04 / 3.8 \mathrm{E}-06$	$3.0 \mathrm{E}-02$	$1.1 \mathrm{E}-05 / 1.1 \mathrm{E}-07$
Bone Surface	$8.4 \mathrm{E}+02 / 8.4 \mathrm{E}+00$	$3.0 \mathrm{E}-02$	$2.5 \mathrm{E}+01 / 2.5 \mathrm{E}-01$
Liver	$1.5 \mathrm{E}+02 / 1.5 \mathrm{E}+00$	$6.0 \mathrm{E}-02$	$9.0 \mathrm{E}+00 / 9.0 \mathrm{E}-02$
Other	$1.4 \mathrm{E}+01 / 1.4 \mathrm{E}-01$	$6.0 \mathrm{E}-02$	$8.6 \mathrm{E}-01 / 8.6 \mathrm{E}-03$
Lower Large Intestine	$3.1 \mathrm{E}-02 / 3.1 \mathrm{E}-04$	$6.0 \mathrm{E}-02$	$1.8 \mathrm{E}-03 / 1.8 \mathrm{E}-05$
Upper Large Intestine	$1.0 \mathrm{E}-02 / 1.0 \mathrm{E}-04$	$6.0 \mathrm{E}-02$	$6.2 \mathrm{E}-04 / 6.2 \mathrm{E}-06$
Small Intestine	$2.1 \mathrm{E}-03 / 2.1 \mathrm{E}-05$	$6.0 \mathrm{E}-02$	$1.3 \mathrm{E}-04 / 1.3 \mathrm{E}-06$
Effective Dose Equivalent			$8.3 \mathrm{E}+01 / 8.3 \mathrm{E}-01$

One urine sample was analyzed by gross alpha counting and alpha spectrometry. The gross alpha analysis was not included in the modeling since an alpha spectrometry result was available for the same sample. The result was fit using CINDY and the Jones excretion model, to estimate an intake ($270,000 \mathrm{pCi}$), organ doses, and a CEDE ($83 \mathrm{rem} / 0.83 \mathrm{~Sv}$; ICRP-30) as shown above. LUDEP was also used to estimate an intake of $1,110,000 \mathrm{pCi}$ and a CEDE (ICRP-60) of $78 \mathrm{rem}(0.78 \mathrm{~Sv}$).

Conclusion:

Based on the results of intake estimates and dose calculations, this individual received an estimated intake of about $270,000 \mathrm{pCi}$ of ${ }^{239} \mathrm{Pu}$ resulting in a 50 -year committed effective dose equivalent of 83 rem (0.83 Sv). That dose is more than the cumulative dose (7 rem) from a lifetime (70 years) of exposure at the
current level (0.100 rem) for members of the public. It is more than the working lifetime limit of 50 rem recommended by the National Council on Radiation Protection and Measurements (NCRP). These dose levels are significant although base on only one data point. However, follow-up urine sampling should be considered to provide additional assessment of the exposure.

Prepared By:
Name: \qquad

Signature: \qquad

Peer Reviewed By:

Name: \qquad
Signature: \qquad Date: \qquad

(b) (6)

Internal Dosimetry Evaluation Form

RECOMMENDATIONS:				
Additional Bioassay Required Suggested Sampling Frequency: Work Restrictions:	N/A		\square Urinalysis	\square Fecal

Release of this document is restricted under the provisions of the Privacy Act, 5 U.S.C. 552(a). C.2-293

Internal Dosimetry Case Narrative

Identification:

Name:

SSN:

Incidents:

Individual participated on site in response duties resulting from an accident involving three nuclear weapons at Palomares, Spain on January 17, 1966. Individual may have been exposed to weapons materials (primarily plutonium-239) by inhalation and ingestion from contaminated weapon and aircraft debris, lands, and vegetation. Primary activities included search, radiological monitoring, recovery of accident debris, and processing for disposal.

Previous Intake/Dose Assessments:

This assessment applies to Palomares accident activities only. No previous intakes or doses were considered.

Other Information:

None.
Radionuclide(s): ${ }^{239} \mathrm{Pu}$.

Assumptions/Basis/Data Sources:

Acute inhalation intake of Pu-239; 100\% Class Y; $1 \mu \mathrm{~m}$ AMAD particle size on $1 / 31 / 66$. The date is the midpoint of the period on station from 1/23/66 to 2/9/66.

Inhalation was assumed as the major route of entry because the primary contaminant was created by explosion and fire and deposited in sandy soil and on buildings and plants. Conditions were generally - windy and significant activity was underway.

Dose was determined entirely from modeling intake based on the following urinalysis results for this individual. This individual's sample was identified for a follow-up analysis using alpha spectrometry after the initial gross alpha result was reviewed. That is, the initial urine sample for this individual was reprocessed radiochemically for alpha spectrometry. Results of the follow-up alpha spectrometry analysis are reported below and were used in preparing the dose estimate.

Sample	Analysis*	Sample Date	Result (pCi/day)	Error (pCi/day)	Included
$66-814$	G	$1 / 29 / 66$	$1.31(12-\mathrm{hr})$	0.510	
$66-3401$	AS	$6 / 2 / 66$	0.099	0.047	\checkmark
$66-3401$	G	$6 / 2 / 66$	NR	NR	
G means gross alpha counting; AS means alpha spectrometry;		NR means no result recorded.			

Intakes and estimates of dose were prepared using CINDY Version 1.4 and LUDEP Version 2.05.
Intake was estimated using the Jones excretion model in CINDY and LUDEP.
Inhalation intake was estimated using the ICRP 66 respiratory tract model in LUDEP.
CINDY estimated dose derived using the ICRP 30, Part 4, General Systemic Model and weighting factors; and LUDEP used the recommendations of ICRP 60.

Modeling:
CINDY and LUDEP were used to estimate the intake and dose with the following results:

Model	Intake (pCi)	CEDE (rem/Sv)
CINDY	140,000	$43 / 0.43$
LUDEP	402,000	$28 / 0.28$

Doses to individual organs and estimation of the effective dose equivalent using CINDY reported the following results:

Organ	Dose Equivalent (rem/Sv)	Weighting Factors	Weighted Organ Dose Equivalent (rem/Sv)
Testes	$6.2 \mathrm{E}+00 / 6.2 \mathrm{E}-02$	$2.5 \mathrm{E}-01$	$1.6 \mathrm{E}+00 / 1.6 \mathrm{E}-02$
Breast	$2.1 \mathrm{E}-04 / 2.1 \mathrm{E}-06$	$1.5 \mathrm{E}-01$	$3.1 \mathrm{E}-05 / 3.1 \mathrm{E}-07$
Red Marrow	$3.4 \mathrm{E}+01 / 3.4 \mathrm{E}-01$	$1.2 \mathrm{E}-01$	$4.0 \mathrm{E}+00 / 4.0 \mathrm{E}-02$
Lung	$1.6 \mathrm{E}+02 / 1.6 \mathrm{E}+00$	$1.2 \mathrm{E}-01$	$1.9 \mathrm{E}+01 / 1.9 \mathrm{E}-01$
Thyroid	$2.0 \mathrm{E}-04 / 2.0 \mathrm{E}-06$	$3.0 \mathrm{E}-02$	$5.9 \mathrm{E}-06 / 5.9 \mathrm{E}-08$
Bone Surface	$4.4 \mathrm{E}+02 / 4.4 \mathrm{E}+00$	$3.0 \mathrm{E}-02$	$1.3 \mathrm{E}+01 / 1.3 \mathrm{E}-01$
Liver	$7.8 \mathrm{E}+01 / 7.8 \mathrm{E}-01$	$6.0 \mathrm{E}-02$	$4.7 \mathrm{E}+00 / 4.7 \mathrm{E}-02$
Other	$7.4 \mathrm{E}+00 / 7.4 \mathrm{E}-02$	$6.0 \mathrm{E}-02$	$4.4 \mathrm{E}-01 / 4.4 \mathrm{E}-03$
Lower Large Intestine	$1.6 \mathrm{E}-02 / 1.6 \mathrm{E}-04$	$6.0 \mathrm{E}-02$	$9.5 \mathrm{E}-04 / 9.5 \mathrm{E}-06$
Upper Large Intestine	$5.3 \mathrm{E}-03 / 5.3 \mathrm{E}-05$	$6.0 \mathrm{E}-02$	$3.2 \mathrm{E}-04 / 3.2 \mathrm{E}-06$
Small Intestine	$1.1 \mathrm{E}-03 / 1.1 \mathrm{E}-05$	$6.0 \mathrm{E}-02$	$6.5 \mathrm{E}-05 / 6.5 \mathrm{E}-07$
Effective Dose Equivalent			$4.3 \mathrm{E}+01 / 4.3 \mathrm{E}-01$

One urine sample was analyzed by gross alpha counting only, and the other was analyzed by both gross alpha counting and alpha spectrometry. For the sample analyzed with both methods, the gross alpha analysis was not included in the modeling since no result was reported and an alpha spectrometry result was available for the same sample. The sample analyzed by gross alpha counting only was not included in the analysis since it was an on-site sample with a result $>0.1 \mathrm{pCi}$, leading to a suspicion of sample contamination. The result was fit using CINDY and the Jones excretion model, to estimate an intake ($140,000 \mathrm{pCi}$), organ doses, and a CEDE ($43 \mathrm{rem} / 0.43 \mathrm{~Sv}$; ICRP-30) as shown above. LUDEP was also used to estimate an intake of $402,000 \mathrm{pCi}$ and a CEDE (ICRP-60) of $28 \mathrm{rem}(0.28 \mathrm{~Sv})$.

Conclusion:

Based on the results of intake estimates and dose calculations, this individual received an estimated intake of about $140,000 \mathrm{pCi}$ of ${ }^{239} \mathrm{Pu}$ resulting in a 50 -year committed effective dose equivalent of 43 rem (0.43 Sv). That dose is more than the cumulative dose (7 rem) from a lifetime (70 years) of exposure at the current level (0.100 rem) for members of the public. It is less than the working lifetime limit of 50 rem recommended by the National Council on Radiation Protection and Measurements (NCRP). Serious health effects are not associated with that dose level. However, follow-up urine sampling now could be considered to provide additional assessment of the exposure.

Prepared By:

Name: \qquad
Signature: \qquad Date: \qquad

Peer Reviewed By:

Name: \qquad
Signature: \qquad Date: \qquad

Internal Dosimetry Evaluation Form

EVALUATION METHODOLOGY:

Assumptions: Acute inhalation intake of ${ }^{239} \mathrm{Pu}, 100 \%$ Class $\mathrm{Y}, 1 \mu \mathrm{~m}$ AMAD particle size on $1 / 23 / 66$

Code/Model used for:	Intake Estimate: CINDY, Ver. 1.4/JONES
	Dose Estimate: CINDY, Ver. 1.4/ICRP 30, Part 4, General Systemic Model

RESULTS SUMMARY
Estimated Intake Activity (pCi): 110000
50 YR CEDE (rem) : 34 (0.34 Sv)

Organ Dose Equivalent Summary	50 YR CDE (rem/Sv)		
Bone Surface	$340 / 3.4$		
Lung	$130 / 1.3$		
Liver	$61 / 0.61$		
Red Marrow	$26 / 0.26$		
Other	$5.8 / 0.058$		
Testes	$4.9 / 0.049$		
DOSE ASSESSOR:		PEER REVIIEWER:	DATE:

Signature: \qquad Signature: \qquad
Print Name: \qquad
SSN:
Print Name: \qquad
SSN:

Internal Dosimetry Case Narrative

Identification:

Name:
SSN:

Incidents:

Individual participated on site in response duties resulting from an accident involving three nuclear weapons at Palomares, Spain on January 17, 1966. Individual may have been exposed to weapons materials (primarily plutonium-239) by inhalation and ingestion from contaminated weapon and aircraft debris, lands, and vegetation. Primary activities included search, radiological monitoring, recovery of accident debris, and processing for disposal.

Previous Intake/Dose Assessments:

This assessment applies to Palomares accident activities only. No previous intakes or doses were considered.

Other Information:

None.
Radionuclide(s): ${ }^{239} \mathrm{Pu}$.

Assumptions/Basis/Data Sources:

Acute inhalation intake of Pu-239; 100% Class Y; $1 \mu \mathrm{~m}$ AMAD particle size on $1 / 23 / 66$. The date is the midpoint of the period on station from $1 / 18 / 66$ to $1 / 29 / 66$.

Inhalation was assumed as the major route of entry because the primary contaminant was created by explosion and fire and deposited in sandy soil and on buildings and plants. Conditions were generally windy and significant activity was underway.

Dose was determined entirely from modeling intake based on the following urinalysis results for this individual. This individual's sample was identified for a follow-up analysis using alpha spectrometry after the initial gross alpha result was reviewed. That is, the initial urine sample for this individual was reprocessed radiochemically for alpha spectrometry. Results of the follow-up alpha spectrometry analysis are reported below and were used in preparing the dose estimate.

Sample	Analysis*	Sample Date	Result $(\mathrm{pCi} /$ day $)$	Error $(\mathrm{pCi} /$ day $)$	Included
$66-1209$	G	$1 / 29 / 66$	6.20	2.18	
$66-3400$	AS	$5 / 30 / 66$	0.078	0.057	\checkmark
$66-3400$	G	$5 / 30 / 66$	NR	NR	
* G means gross alpha counting; AS means alpha spectrometry;	NR means no result reported.				

Intakes and estimates of dose were prepared using CINDY Version 1.4 and LUDEP Version 2.05.
Intake was estimated using the Jones excretion model in CINDY and LUDEP.
Inhalation intake was estimated using the ICRP 66 respiratory tract model in LUDEP.
CINDY estimated dose derived using the ICRP 30, Part 4, General Systemic Model and weighting factors; and LUDEP used the recommendations of ICRP 60.

Modeling:

CINDY and LUDEP were used to estimate the intake and dose with the following results:

Model	Intake (pCi)	CEDE $(\mathrm{rem} / \mathrm{Sv})$
CINDY	110,000	$34 / 0.34$
LUDEP	316,000	$22 / 0.22$

Doses to individual organs and estimation of the effective dose equivalent using CINDY reported the following results:

Organ	Dose Equivalent $(\mathrm{rem} / \mathrm{Sv})$	Weighting Factors	Weighted Organ Dose Equivalent (rem/Sv)
Testes	$4.9 \mathrm{E}+00 / 4.9 \mathrm{E}-02$	$2.5 \mathrm{E}-01$	$1.2 \mathrm{E}+00 / 1.2 \mathrm{E}-02$
Breast	$1.6 \mathrm{E}-04 / 1.6 \mathrm{E}-06$	$1.5 \mathrm{E}-01$	$2.4 \mathrm{E}-05 / 2.4 \mathrm{E}-07$
Red Marrow	$2.6 \mathrm{E}+01 / 2.6 \mathrm{E}-01$	$1.2 \mathrm{E}-01$	$3.2 \mathrm{E}+00 / 3.2 \mathrm{E}-02$
Lung	$1.3 \mathrm{E}+02 / 1.3 \mathrm{E}+00$	$1.2 \mathrm{E}-01$	$1.5 \mathrm{E}+01 / 1.5 \mathrm{E}-01$
Thyroid	$1.5 \mathrm{E}-04 / 1.5 \mathrm{E}-06$	$3.0 \mathrm{E}-02$	$4.6 \mathrm{E}-06 / 4.6 \mathrm{E}-08$
Bone Surface	$3.4 \mathrm{E}+02 / 3.4 \mathrm{E}+00$	$3.0 \mathrm{E}-02$	$1.0 \mathrm{E}+01 / 1.0 \mathrm{E}-01$
Liver	$6.1 \mathrm{E}+01 / 6.1 \mathrm{E}-01$	$6.0 \mathrm{E}-02$	$3.7 \mathrm{E}+00 / 3.7 \mathrm{E}-02$
Other	$5.8 \mathrm{E}+00 / 5.8 \mathrm{E}-02$	$6.0 \mathrm{E}-02$	$3.5 \mathrm{E}-01 / 3.5 \mathrm{E}-03$
Lower Large Intestine	$1.2 \mathrm{E}-02 / 1.2 \mathrm{E}-04$	$6.0 \mathrm{E}-02$	$7.5 \mathrm{E}-04 / 7.5 \mathrm{E}-06$
Upper Large Intestine	$4.2 \mathrm{E}-03 / 4.2 \mathrm{E}-05$	$6.0 \mathrm{E}-02$	$2.5 \mathrm{E}-04 / 2.5 \mathrm{E}-06$
Small Intestine	$8.6 \mathrm{E}-04 / 8.6 \mathrm{E}-06$	$6.0 \mathrm{E}-02$	$5.1 \mathrm{E}-05 / 5.1 \mathrm{E}-07$
Effective Dose Equivalent			$3.4 \mathrm{E}+01 / 3.4 \mathrm{E}-01$

One urine sample was analyzed by gross alpha counting only, and the other was analyzed by both gross alpha counting and alpha spectrometry. For the sample analyzed with both methods, the gross alpha analysis was not included in the modeling since no result was reported and an alpha spectrometry result was available for the same sample. The sample analyzed by gross alpha counting only was not included in the analysis since it was an on-site sample with a result $>0.1 \mathrm{pCi}$, leading to a suspicion of sample contamination. The result was fit using CINDY and the Jones excretion model, to estimate an intake $(110,000 \mathrm{pCi})$, organ doses, and a CEDE ($34 \mathrm{rem} / 0.34 \mathrm{~Sv}$; ICRP-30) as shown above. LUDEP was also used to estimate an intake of $316,000 \mathrm{pCi}$ and a CEDE (ICRP-60) of 22 rem (0.22 Sv).

Conclusion:

Based on the results of intake estimates and dose calculations, this individual received an estimated intake of about $110,000 \mathrm{pCi}$ of ${ }^{239} \mathrm{Pu}$ resulting in a 50 -year committed effective dose equivalent of 34 rem (0.34 Sv). That dose is more than the cumulative dose (7 rem) from a lifetime (70 years) of exposure at the current level $(0.100 \mathrm{rem})$ for members of the public. It is less than the working lifetime limit of 50 rem recommended by the National Council on Radiation Protection and Measurements (NCRP). Serious health effects are not associated with that dose level. However, follow-up urine sampling now could be considered to provide additional assessment of the exposure.

Prepared By:

Name: \qquad
Signature: \qquad

Peer Reviewed By:

Name: \qquad
Signature: \qquad Date: \qquad
, *

, 2友 56

Internal Dosimetry Evaluation Form

RECOMMENDATIONS:

Additional Bioassay Required
Suggested Sampling Frequency:
Work Restrictions:Urinalysis \square Fecal \square In Vivo

Internal Dosimetry Case Narrative

Identification:

Name:
SSN:

Incidents:

Individual participated on site in response duties resulting from an accident involving three nuclear weapons at Palomares, Spain on January 17, 1966. Individual may have been exposed to weapons materials (primarily plutonium-239) by inhalation and ingestion from contaminated weapon and aircraft debris, lands, and vegetation. Primary activities included search, radiological monitoring, recovery of accident debris, and processing for disposal.

Previous Intake/Dose Assessments:

This assessment applies to Palomares accident activities only. No previous intakes or doses were considered.

Other Information:

None.
Radionuclide(s): ${ }^{239} \mathrm{Pu}$.

Assumptions/Basis/Data Sources:

Acute inhalation intake of Pu-239; 100% Class Y; $1 \mu \mathrm{~m}$ AMAD particle size on $1 / 31 / 66$. The date is the midpoint of the period on station from 1/18/66 to 2/14/66.

Inhalation was assumed as the major route of entry because the primary contaminant was created by explosion and fire and deposited in sandy soil and on buildings and plants. Conditions were generally windy and significant activity was underway.

Dose was determined entirely from modeling intake based on the following urinalysis results for this individual. This individual's sample was identified for a follow-up analysis using alpha spectrometry after the initial gross alpha result was reviewed. That is, the initial urine sample for this individual was reprocessed radiochemically for alpha spectrometry. Results of the follow-up alpha spectrometry analysis are reported below and were used in preparing the dose estimate.

Sample	Analysis*	Sample Date	Result (pCi/day)	Error (pCi/day)	Included
$66-1149$	G	$2 / 5 / 66$	ND	ND	\checkmark
$66-2811$	AS	$4 / 8 / 66$	0.076	0.007	\checkmark
$66-2871$	G	$4 / 8 / 66$	1.45	0.310	
* G means gross alpha counting; AS means alpha spectrometry.					

A nasal swipe (sample \#66-1334) was recorded for result was available.

Intakes and estimates of dose were prepared using CINDY Version 1.4 and LUDEP Version 2.05.
Intake was estimated using the Jones excretion model in CINDY and LUDEP.
Inhalation intake was estimated using the ICRP 66 respiratory tract model in LUDEP.
CINDY estimated dose derived using the ICRP 30, Part 4, General Systemic Model and weighting factors; and LUDEP used the recommendations of ICRP 60.

Modeling:

CINDY and LUDEP were used to estimate the intake and dose with the following results:

Model	Intake (pCi)	CEDE $(\mathrm{rem} / \mathrm{Sv})$
CINDY	28,000	$8.6 / 0.086$
LUDEP	42,400	$3.0 / 0.03$

Doses to individual organs and estimation of the effective dose equivalent using CINDY reported the following results:

Organ	Dose Equivalent $(\mathrm{rem} / \mathrm{Sv})$	Weighting Factors	Weighted Organ Dose Equivalent $(\mathrm{rem} / \mathrm{Sv})$
Testes	$1.2 \mathrm{E}+00 / 1.2 \mathrm{E}-02$	$2.5 \mathrm{E}-01$	$3.1 \mathrm{E}-01 / 3.1 \mathrm{E}-03$
Breast	$4.1 \mathrm{E}-05 / 4.1 \mathrm{E}-07$	$1.5 \mathrm{E}-01$	$6.2 \mathrm{E}-06 / 6.2 \mathrm{E}-08$
Red Marrow	$6.7 \mathrm{E}+00 / 6.7 \mathrm{E}-02$	$1.2 \mathrm{E}-01$	$8.1 \mathrm{E}-01 / 8.1 \mathrm{E}-03$
Lung	$3.2 \mathrm{E}+01 / 3.2 \mathrm{E}-01$	$1.2 \mathrm{E}-01$	$3.8 \mathrm{E}+00 / 3.8 \mathrm{E}-02$
Thyroid	$3.9 \mathrm{E}-05 / 3.9 \mathrm{E}-07$	$3.0 \mathrm{E}-02$	$1.2 \mathrm{E}-06 / 1.2 \mathrm{E}-08$
Bone Surface	$8.7 \mathrm{E}+01 / 8.7 \mathrm{E}-01$	$3.0 \mathrm{E}-02$	$2.6 \mathrm{E}+00 / 2.6 \mathrm{E}-02$
Liver	$1.6 \mathrm{E}+01 / 1.6 \mathrm{E}-01$	$6.0 \mathrm{E}-02$	$9.4 \mathrm{E}-01 / 9.4 \mathrm{E}-03$
Other	$1.5 \mathrm{E}+00 / 1.5 \mathrm{E}-02$	$6.0 \mathrm{E}-02$	$8.9 \mathrm{E}-02 / 8.9 \mathrm{E}-04$
Lower Large Intestine	$3.2 \mathrm{E}-03 / 3.2 \mathrm{E}-05$	$6.0 \mathrm{E}-02$	$1.9 \mathrm{E}-04 / 1.9 \mathrm{E}-06$
Upper Large Intestine	$1.1 \mathrm{E}-03 / 1.1 \mathrm{E}-05$	$6.0 \mathrm{E}-02$	$6.4 \mathrm{E}-05 / 6.4 \mathrm{E}-07$
Small Intestine	$2.2 \mathrm{E}-04 / 2.2 \mathrm{E}-06$	$6.0 \mathrm{E}-02$	$1.3 \mathrm{E}-05 / 1.3 \mathrm{E}-07$
Effective Dose Equivalent			$8.6 \mathrm{E}+00 / 8.6 \mathrm{E}-02$

One urine sample was analyzed by gross alpha counting, and the other was analyzed by both gross alpha counting and alpha spectrometry. The gross alpha analysis for the second sample was not included in the modeling since an alpha spectrometry result was available for the same sample. The sample result that was analyzed using gross alpha counting only was reported as No Detectable Activity. A value of 0.009 pCi was used to represent this outcome. The results were fit using CINDY and the Jones excretion model, to estimate an intake ($28,000 \mathrm{pCi}$), organ doses, and a CEDE ($8.6 \mathrm{rem} / 0.086 \mathrm{~Sv}$; ICRP-30) as shown above. LUDEP was also used to estimate an intake of $42,400 \mathrm{pCi}$ and a CEDE (ICRP-60) of 3.0 rem (0.03 Sv).

Conclusion:

Based on the results of intake estimates and dose calculations, this individual received an estimated intake of about $28,000 \mathrm{pCi}$ of ${ }^{239} \mathrm{Pu}$ resulting in a 50 -year committed effective dose equivalent of $8.6 \mathrm{rem}(0.086$ Sv). That dose is more than the cumulative dose (7 rem) from a lifetime (70 years) of exposure at the current level (0.100 rem) for members of the public. It is less than half the working lifetime limit of 50 rem recommended by the National Council on Radiation Protection and Measurements (NCRP). Serious health effects are not associated with that dose level.

Prepared By:

Name: \qquad
Signature: \qquad

Peer Reviewed By:

Name: \qquad
Signature: \qquad Date: \qquad

Internal Dosimetry Evaluation Form

NAME: ${ }^{(1)}$ (G)				SSN: (b) (6)	
MODE OF INTAKE: 区 Inhalation \square Ingestion \square Unknown	Injection Absorption Not applicable	INTAKE DATE OR PERIOD: 1/18/66 through 4/8/66, onsite 2/27/66			
SUMMARY OF EXPOSURE CONDITIONS: Radionuclides/Respiratory Class/Particle Size: ${ }^{239} \mathrm{Pu} / 100 \%$ Class Y/1 $\mu \mathrm{m}$ AMAD Date or Period of Evaluated Data: 1 sample, 4/8/66 Duration of Exposure: Unknown Location of Exposure: Camp Wilson, near Palomares, Spain					
EVALUATION DATA:					
Medical Treatment: Skin Decontamination: Decorporation: Catharsis: Surgical excision:	\square Yes \square Yes \square Yes \square Yes	\boxtimes No \boxtimes No \boxtimes No \boxtimes No	Date: Agent: Agent: Date:		Date: Date:

EVALUATION METHODOLOGY:

Assumptions: Acute inhalation intake of ${ }^{239} \mathrm{Pu}, 100 \%$ Class $\mathrm{Y}, 1 \mu \mathrm{~m}$ AMAD particle size on $2 / 27 / 66$
Code/Model used for: Intake Estimate: CINDY, Ver. 1.4/JONES
Dose Estimate: CINDY, Ver. 1.4/ICRP 30, Part 4, General Systemic Model
RESULTS SUMIMARY
Estimated Intake Activity (pCi): 95000
50 YR CEDE (rem) : 29 (0.29 Sv)
Organ Dose Equivalent Summary 50 YR CDE (rem/Sv)
Bone Surface

300/3
Lung
110/1.1
Liver
53/0.53
Red Marrow
23/0.23
Other 5/0.05
Testes
4.2/0.042

DOSE ASSESSOR:	DATE:	PEER REVIEWER: Signature:	DATE:
Signature:			
Print Name:		Print Name:	-
SSN:		SSN:	

RECOMMENDATIONS:

| Additional Bioassay Required | |
| :--- | :--- | :--- | :--- | :--- |
| Suggested Sampling Frequency: | |
| Work Restrictions: | N/A |$\quad \square$ Urinalysis $\quad \square$ Fecal $\quad \square$ In Vivo

Internal Dosimetry Case Narrative

Identification:

Name:
SSN:

Incidents:

Individual participated on site in response duties resulting from an accident involving three nuclear weapons at Palomares, Spain on January 17, 1966. Individual may have been exposed to weapons materials (primarily plutonium-239) by inhalation and ingestion from contaminated weapon and aircraft debris, lands, and vegetation. Primary activities included search, radiological monitoring, recovery of accident debris, and processing for disposal.

Previous Intake/Dose Assessments:

This assessment applies to Palomares accident activities only. No previous intakes or doses were considered.

Other Information:

None.
Radionuclide(s): ${ }^{239} \mathrm{Pu}$.

Assumptions/Basis/Data Sources:

Acute inhalation intake of Pu-239; 100% Class Y; $1 \mu \mathrm{~m}$ AMAD particle size on $2 / 27 / 66$. The date is the midpoint of the period on station from 1/18/66 to 4/8/66.

Inhalation was assumed as the major route of entry because the primary contaminant was created by explosion and fire and deposited in sandy soil and on buildings and plants. Conditions were generally windy and significant activity was underway.

Dose was determined entirely from modeling intake based on the following urinalysis results for this individual. This individual's sample was identified for a follow-up analysis using alpha spectrometry after the initial gross alpha result was reviewed. That is, the initial urine sample for this individual was reprocessed radiochemically for alpha spectrometry. Results of the follow-up alpha spectrometry analysis are reported below and were used in preparing the dose estimate.

Sample	Analysis*	Sample Date	Result (pCi/day)	Error (pCi/day)	Included
$66-2861$	AS	$4 / 8 / 66$	0.074	0.011	\checkmark
$66-2861$	G	$4 / 8 / 66$	1.29	0.290	
* G means gross alpha counting; AS means alpha spectrometry.					

Intakes and estimates of dose were prepared using CINDY Version 1.4 and LUDEP Version 2.05.
Intake was estimated using the Jones excretion model in CINDY and LUDEP.
Inhalation intake was estimated using the ICRP 66 respiratory tract model in LUDEP.
CINDY estimated dose derived using the ICRP 30, Part 4, General Systemic Model and weighting factors; and LUDEP used the recommendations of ICRP 60.

Modeling:

CINDY and LUDEP were used to estimate the intake and dose with the following results:

Model	Intake (pCi)	CEDE (rem/Sv)
CINDY	95,000	$29 / 0.29$
LUDEP	316,000	$22 / 0.22$

Doses to individual organs and estimation of the effective dose equivalent using CINDY reported the following results:

Organ	Dose Equivalent (rem/Sv)	Weighting Factors	Weighted Organ Dose Equivalent (rem/Sv)
Testes	$4.2 \mathrm{E}+00 / 4.2 \mathrm{E}-02$	$2.5 \mathrm{E}-01$	$1.1 \mathrm{E}+00 / 1.1 \mathrm{E}-02$
Breast	$1.4 \mathrm{E}-04 / 1.4 \mathrm{E}-06$	$1.5 \mathrm{E}-01$	$2.1 \mathrm{E}-05 / 2.1 \mathrm{E}-07$
Red Marrow	$2.3 \mathrm{E}+01 / 2.3 \mathrm{E}-01$	$1.2 \mathrm{E}-01$	$2.7 \mathrm{E}+00 / 2.7 \mathrm{E}-02$
Lung	$1.1 \mathrm{E}+02 / 1.1 \mathrm{E}+00$	$1.2 \mathrm{E}-01$	$1.3 \mathrm{E}+01 / 1.3 \mathrm{E}-01$
Thyroid	$1.3 \mathrm{E}-04 / 1.3 \mathrm{E}-06$	$3.0 \mathrm{E}-02$	$4.0 \mathrm{E}-06 / 4.0 \mathrm{E}-08$
Bone Surface	$3.0 \mathrm{E}+02 / 3.0 \mathrm{E}+00$	$3.0 \mathrm{E}-02$	$8.9 \mathrm{E}+00 / 8.9 \mathrm{E}-02$
Liver	$5.3 \mathrm{E}+01 / 5.3 \mathrm{E}-01$	$6.0 \mathrm{E}-02$	$3.2 \mathrm{E}+00 / 3.2 \mathrm{E}-02$
Other	$5.0 \mathrm{E}+00 / 5.0 \mathrm{E}-02$	$6.0 \mathrm{E}-02$	$3.0 \mathrm{E}-01 / 3.0 \mathrm{E}-03$
Lower Large Intestine	$1.1 \mathrm{E}-02 / 1.1 \mathrm{E}-04$	$6.0 \mathrm{E}-02$	$6.5 \mathrm{E}-04 / 6.5 \mathrm{E}-06$
Upper Large Intestine	$3.6 \mathrm{E}-03 / 3.6 \mathrm{E}-05$	$6.0 \mathrm{E}-02$	$2.2 \mathrm{E}-04 / 2.2 \mathrm{E}-06$
Small Intestine	$7.4 \mathrm{E}-04 / 7.4 \mathrm{E}-06$	$6.0 \mathrm{E}-02$	$4.4 \mathrm{E}-05 / 4.4 \mathrm{E}-07$
Effective Dose Equivalent			$2.9 \mathrm{E}+01 / 2.9 \mathrm{E}-01$

One urine sample was analyzed by gross alpha counting and alpha spectrometry. The gross alpha analysis was not included in the modeling since an alpha spectrometry result was available for the same sample. The result was fit using CINDY and the Jones excretion model, to estimate an intake ($95,000 \mathrm{pCi}$), organ doses, and a CEDE ($29 \mathrm{rem} / 0.29 \mathrm{~Sv}$; ICRP-30) as shown above. LUDEP was also used to estimate an intake of $316,000 \mathrm{pCi}$ and a CEDE (ICRP-60) of 22 rem (0.22 Sv).

Conclusion:

Based on the results of intake estimates and dose calculations, this individual received an estimated intake of about $95,000 \mathrm{pCi}$ of ${ }^{239} \mathrm{Pu}$ resulting in a 50 -year committed effective dose equivalent of $29 \mathrm{rem}(0.29$ Sv). That dose is more than the cumulative dose (7 rem) from a lifetime (70 years) of exposure at the
current level (0.100 rem) for members of the public. It is less than the working lifetime limit of 50 rem recommended by the National Council on Radiation Protection and Measurements (NCRP). Serious health effects are not associated with that dose level.

Prepared By:
Name: \qquad
Signature: \qquad Date: \qquad

Peer Reviewed By:

Name: \qquad
Signature: \qquad Date: \qquad

Internal Dosimetry Evaluation Form

RECOMIMIENDATIONS:

| Additional Bioassay Required
 Suggested Sampling Frequency:
 Work Restrictions: N/A | \square Urinalysis | \square Fecal | \square In Vivo |
| :--- | :--- | :--- | :--- | :--- |
| | | | |

Internal Dosimetry Case Narrative

Identification:

Incidents:

Individual participated on site in response duties resulting from an accident involving three nuclear weapons at Palomares, Spain on January 17, 1966. Individual may have been exposed to weapons materials (primarily plutonium-239) by inhalation and ingestion from contaminated weapon and aircraft debris, lands, and vegetation. Primary activities included search, radiological monitoring, recovery of accident debris, and processing for disposal.

Previous Intake/Dose Assessments:

This assessment applies to Palomares accident activities only. No previous intakes or doses were considered.

Other Information:

None.
Radionuclide(s): ${ }^{239} \mathrm{Pu}$.

Assumptions/Basis/Data Sources:

Acute inhalation intake of $\mathrm{Pu}-239 ; 100 \%$ Class $\mathrm{Y} ; 1 \mu \mathrm{~m}$ AMAD particle size on $2 / 9 / 66$. The date is the midpoint of the period on station from $1 / 18 / 66$ to 3/4/66.

Inhalation was assumed as the major route of entry because the primary contaminant was created by explosion and fire and deposited in sandy soil and on buildings and plants. Conditions were generally windy and significant activity was underway.

Dose was determined entirely from modeling intake based on the following urinalysis results for this individual. This individual's sample was identified for a follow-up analysis using alpha spectrometry after the initial gross alpha result was reviewed. That is, the initial urine sample for this individual was reprocessed radiochemically for alpha spectrometry. Results of the follow-up alpha spectrometry analysis are reported below and were used in preparing the dose estimate.

Sample	Analysis*	Sample Date	Result (pCi/day)	Error (pCi/day)	Included
$66-2869$	AS	$4 / 6 / 66$	0.224	0.007	\checkmark
*-2869	G	$4 / 6 / 66$	1.75	0.340	
* G means gross alpha counting; AS means alpha spectrometry.					

Intakes and estimates of dose were prepared using CINDY Version 1.4 and LUDEP Version 2.05.
Intake was estimated using the Jones excretion model in CINDY and LUDEP.
Inhalation intake was estimated using the ICRP 66 respiratory tract model in LUDEP.
CINDY estimated dose derived using the ICRP 30, Part 4, General Systemic Model and weighting factors; and LUDEP used the recommendations of ICRP 60.

Modeling:

CINDY and LUDEP were used to estimate the intake and dose with the following results:

Model	Intake (pCi)	CEDE $(\mathrm{rem} / \mathrm{Sv})$
CINDY	310,000	$95 / 0.95$
LUDEP	950,000	$67 / 0.67$

Doses to individual organs and estimation of the effective dose equivalent using CINDY reported the following results:

Organ	Dose Equivalent $($ rem $/$ Sv $)$	Weighting Factors	Weighted Organ Dose Equivalent (rem/Sv)
Testes	$1.4 \mathrm{E}+01 / 1.4 \mathrm{E}-01$	$2.5 \mathrm{E}-01$	$3.5 \mathrm{E}+00 / 3.5 \mathrm{E}-02$
Breast	$4.6 \mathrm{E}-04 / 4.6 \mathrm{E}-06$	$1.5 \mathrm{E}-01$	$6.9 \mathrm{E}-05 / 6.9 \mathrm{E}-07$
Red Marrow	$7.5 \mathrm{E}+01 / 7.5 \mathrm{E}-01$	$1.2 \mathrm{E}-01$	$9.0 \mathrm{E}+00 / 9.0 \mathrm{E}-02$
Lung	$3.5 \mathrm{E}+02 / 3.5 \mathrm{E}+00$	$1.2 \mathrm{E}-01$	$4.2 \mathrm{E}+01 / 4.2 \mathrm{E}-01$
Thyroid	$4.3 \mathrm{E}-04 / 4.3 \mathrm{E}-06$	$3.0 \mathrm{E}-02$	$1.3 \mathrm{E}-05 / 1.3 \mathrm{E}-07$
Bone Surface	$9.7 \mathrm{E}+02 / 9.7 \mathrm{E}+00$	$3.0 \mathrm{E}-02$	$2.9 \mathrm{E}+01 / 2.9 \mathrm{E}-01$
Liver	$1.7 \mathrm{E}+02 / 1.7 \mathrm{E}+00$	$6.0 \mathrm{E}-02$	$1.0 \mathrm{E}+01 / 1.0 \mathrm{E}-01$
Other	$1.6 \mathrm{E}+01 / 1.6 \mathrm{E}-01$	$6.0 \mathrm{E}-02$	$9.8 \mathrm{E}-01 / 9.8 \mathrm{E}-03$
Lower Large Intestine	$3.5 \mathrm{E}-02 / 3.5 \mathrm{E}-04$	$6.0 \mathrm{E}-02$	$2.1 \mathrm{E}-03 / 2.1 \mathrm{E}-05$
Upper Large Intestine	$1.2 \mathrm{E}-02 / 1.2 \mathrm{E}-04$	$6.0 \mathrm{E}-02$	$7.1 \mathrm{E}-04 / 7.1 \mathrm{E}-06$
Small Intestine	$2.4 \mathrm{E}-03 / 2.4 \mathrm{E}-05$	$6.0 \mathrm{E}-02$	$1.5 \mathrm{E}-04 / 1.5 \mathrm{E}-06$
Effective Dose Equivalent			$9.5 \mathrm{E}+01 / 9.5 \mathrm{E}-01$

One urine sample was analyzed by gross alpha counting and alpha spectrometry. The gross alpha analysis was not included in the modeling since an alpha spectrometry result was available for the same sample. The result was fit using CINDY and the Jones excretion model, to estimate an intake ($310,000 \mathrm{pCi}$), organ doses, and a CEDE ($95 \mathrm{rem} / 0.95 \mathrm{~Sv}$; ICRP-30) as shown above. LUDEP was also used to estimate an intake of $950,000 \mathrm{pCi}$ and a CEDE (ICRP-60) of $67 \mathrm{rem}(0.67 \mathrm{~Sv})$.

Conclusion:

Based on the results of intake estimates and dose calculations, this individual received an estimated intake of about $310,000 \mathrm{pCi}$ of ${ }^{239} \mathrm{Pu}$ resulting in a 50 -year committed effective dose equivalent of 95 rem (0.95 Sv). That dose is more than the cumulative dose (7 rem) from a lifetime (70 years) of exposure at the
current level (0.100 rem) for members of the public. It is more than the working lifetime limit of 50 rem recommended by the National Council on Radiation Protection and Measurements (NCRP). These dose levels are significant, although they were based on only one sample. However, follow-up urine sampling should be considered to provide additional assessment of the exposure.

Prepared By:

Name: \qquad
Signature: \qquad Date: \qquad

Peer Reviewed By:

Name: \qquad
Signature: \qquad Date: \qquad

$\cos \mathrm{it}$

\qquad

\qquad
\qquad

Internal Dosimetry Evaluation Form

NAME: ${ }^{(5)}$ (6)			SSN: ${ }^{(6)}$ (6)	
	Injection Absorption Not applicable	INTAKE DATE OR PERIOD: 1/29/66 through 2/14/66, onsite 2/6/66		
SUMMARY OF EXPOSURE CONDITIONS: Radionuclides/Respiratory Class/Particle Size: ${ }^{239} \mathrm{Pu} / 100 \%$ Class Y/1 $\mu \mathrm{m}$ AMAD Date or Period of Evaluated Data: 2 samples, 2/14/66 and 4/8/66 Duration of Exposure: Unknown Location of Exposure: Camp Wilson, near Palomares, Spain				
EVALUATION DATA: Air Sampling Health Physics Survey Data Bioassay - Urinalysis Fecal Nasal Smears In Vivo	\square Attached \square Attached \boxtimes Attached \square Attached \boxtimes Attached \square Attached	\square In Process	《 Unavailable 区 Unavailable Unavailable Unavailable Unavailable Unavailable	
Medical Treatment: Skin Decontamination: Decorporation: Catharsis: Surgical excision:	$\square \mathrm{Yes}$ $\square \mathrm{Yes}$ $\square \mathrm{Yes}$ $\square \mathrm{Yes}$	\boxtimes No Date: \boxtimes No Agent: \boxtimes No Agent: \boxtimes No Date:		Date: Date: \qquad

EVALUATION METHODOLOGY:

Assumptions: Acute inhalation intake of ${ }^{239} \mathrm{Pu}, 100 \%$ Class Y, $1 \mu \mathrm{~m}$ AMAD particle size on $2 / 6 / 66$
Code/Model used for: Intake Estimate: CINDY, Ver. 1.4/JONES
Dose Estimate: CINDY, Ver. 1.4/ICRP 30, Part 4, General Systemic Model
RESULTS SUMMARY
Estimated Intake Activity (pCi): 110000
50 YR CEDE (rem) : 34 (0.34 Sv)
Organ Dose Equivalent Summary 50 YR CDE (rem/Sv)

Bone Surface	$340 / 3.4$
Lung	$130 / 1.3$
Liver	$61 / 0.61$
Red Marrow	$26 / 0.26$
Other	$5.8 / 0.058$
Testes	$4.9 / 0.049$

RECOMMENDATIONS: Additional Bioassay Required Suggested Sampling Frequency: Work Restrictions:\quad N/A		\square Urinalysis	\square Fecal	\square ln Vivo

Release of this document is restricted under thoprovisians of the Privacy Act, 5 U.S.C. 552(a). C.2-327

Internal Dosimetry Case Narrative

Identification:

Incidents:

Individual participated on site in response duties resulting from an accident involving three nuclear weapons at Palomares, Spain on January 17, 1966. Individual may have been exposed to weapons materials (primarily plutonium-239) by inhalation and ingestion from contaminated weapon and aircraft debris, lands, and vegetation. Primary activities included search, radiological monitoring, recovery of accident debris, and processing for disposal.

Previous Intake/Dose Assessments:

This assessment applies to Palomares accident activities only. No previous intakes or doses were considered.

Other Information:

None.
Radionuclide(s): ${ }^{239} \mathrm{Pu}$.

Assumptions/Basis/Data Sources:

Acute inhalation intake of Pu-239; 100% Class Y; $1 \mu \mathrm{~m}$ AMAD particle size on $2 / 6 / 66$. The date is the midpoint of the period on station from $1 / 29 / 66$ to $2 / 14 / 66$.

Inhalation was assumed as the major route of entry because the primary contaminant was created by explosion and fire and deposited in sandy soil and on buildings and plants. Conditions were generally windy and significant activity was underway.

Dose was determined entirely from modeling intake based on the following urinalysis results for this individual. This individual's sample was identified for a follow-up analysis using alpha spectrometry after the initial gross alpha result was reviewed. That is, the initial urine sample for this individual was reprocessed radiochemically for alpha spectrometry. Results of the follow-up alpha spectrometry analysis are reported below and were used in preparing the dose estimate.

Sample	Analysis*	Sample Date	Result (pCi/day)	Error (pCi/day)	Included
$66-1147$	G	$2 / 14 / 66$	NR	NR	
$66-2872$	AS	$4 / 8 / 66$	0.076	0.007	\checkmark
$66-2872$	G	$4 / 8 / 66$	1.66	0.330	
* Geans gross alpha counting; AS means alpha spectrometry;	NR means no result reported.				

A nasal swipe (sample \#66-1333) was reported to have been taken for on $2 / 14 / 66$. No result was available for this sample.

Intakes and estimates of dose were prepared using CINDY Version 1.4 and LUDEP Version 2.05.
Intake was estimated using the Jones excretion model in CINDY and LUDEP.
Inhalation intake was estimated using the ICRP 66 respiratory tract model in LUDEP.
CINDY estimated dose derived using the ICRP 30, Part 4, General Systemic Model and weighting factors; and LUDEP used the recommendations of ICRP 60.

Modeling:

CINDY and LUDEP were used to estimate the intake and dose with the following results:

Model	Intake (pCi)	CEDE $(\mathrm{rem} / \mathrm{Sv})$
CINDY	110,000	$34 / 0.34$
LUDEP	321,000	$22 / 0.22$

Doses to individual organs and estimation of the effective dose equivalent using CINDY reported the following results:

Organ	Dose Equivalent (rem/Sv)	Weighting Factors	Weighted Organ Dose Equivalent (rem/Sv)
Testes	$4.9 \mathrm{E}+00 / 4.9 \mathrm{E}-02$	$2.5 \mathrm{E}-01$	$1.2 \mathrm{E}+00 / 1.2 \mathrm{E}-02$
Breast	$1.6 \mathrm{E}-04 / 1.6 \mathrm{E}-06$	$1.5 \mathrm{E}-01$	$2.4 \mathrm{E}-05 / 2.4 \mathrm{E}-07$
Red Marrow	$2.6 \mathrm{E}+01 / 2.6 \mathrm{E}-01$	$1.2 \mathrm{E}-01$	$3.2 \mathrm{E}+00 / 3.2 \mathrm{E}-02$
Lung	$1.3 \mathrm{E}+02 / 1.3 \mathrm{E}+00$	$1.2 \mathrm{E}-01$	$1.5 \mathrm{E}+01 / 1.5 \mathrm{E}-01$
Thyroid	$1.5 \mathrm{E}-04 / 1.5 \mathrm{E}-06$	$3.0 \mathrm{E}-02$	$4.6 \mathrm{E}-06 / 4.6 \mathrm{E}-08$
Bone Surface	$3.4 \mathrm{E}+02 / 3.4 \mathrm{E}+00$	$3.0 \mathrm{E}-02$	$1.0 \mathrm{E}+01 / 1.0 \mathrm{E}-01$
Liver	$6.1 \mathrm{E}+01 / 6.1 \mathrm{E}-01$	$6.0 \mathrm{E}-02$	$3.7 \mathrm{E}+00 / 3.7 \mathrm{E}-02$
Other	$5.8 \mathrm{E}+00 / 5.8 \mathrm{E}-02$	$6.0 \mathrm{E}-02$	$3.5 \mathrm{E}-01 / 3.5 \mathrm{E}-03$
Lower Large Intestine	$1.2 \mathrm{E}-02 / 1.2 \mathrm{E}-04$	$6.0 \mathrm{E}-02$	$7.5 \mathrm{E}-04 / 7.5 \mathrm{E}-06$
Upper Large Intestine	$4.2 \mathrm{E}-03 / 4.2 \mathrm{E}-05$	$6.0 \mathrm{E}-02$	$2.5 \mathrm{E}-04 / 2.5 \mathrm{E}-06$
Small Intestine	$8.6 \mathrm{E}-04 / 8.6 \mathrm{E}-06$	$6.0 \mathrm{E}-02$	$5.1 \mathrm{E}-05 / 5.1 \mathrm{E}-07$
Effective Dose Equivalent			$3.4 \mathrm{E}+01 / 3.4 \mathrm{E}-01$

One urine sample was analyzed by gross alpha counting only, and the other was analyzed by both gross alpha counting and alpha spectrometry. For the sample analyzed with both methods, the gross alpha analysis was not included in the modeling since an alpha spectrometry result was available for the same sample. The sample analyzed by gross alpha counting only was not included in the analysis since no result was reported for it. The result was fit using CINDY and the Jones excretion model, to estimate an intake ($110,000 \mathrm{pCi}$), organ doses, and a CEDE ($34 \mathrm{rem} / 0.34 \mathrm{~Sv}$; ICRP-30) as shown above. LUDEP was also used to estimate an intake of $321,000 \mathrm{pCi}$ and a CEDE (ICRP-60) of 22 rem (0.22 Sv).

Conclusion:

Based on the results of intake estimates and dose calculations, this individual received an estimated intake of about $110,000 \mathrm{pCi}$ of ${ }^{239} \mathrm{Pu}$ resulting in a 50 -year committed effective dose equivalent of 34 rem (0.34 Sv). That dose is more than the cumulative dose (7 rem) from a lifetime (70 years) of exposure at the current level (0.100 rem) for members of the public. It is less than the working lifetime limit of 50 rem recommended by the National Council on Radiation Protection and Measurements (NCRP). Serious health effects are not associated with that dose level. However, follow-up urine sampling now could be considered to provide additional assessment of the exposure.

Prepared By:

Name:

Date: \qquad

Peer Reviewed By:
Name: \qquad
Signature:

Date: \qquad

Internal Dosimetry Evaluation Form

RECOMIMENDATIONS:

Additional Bioassay Required
Suggested Sampling Frequency:
Work Restrictions:
\square UrinalysisFecalIn Vivo

[^4]
Internal Dosimetry Case Narrative

Identification:

Imcidents:

Individual participated on site in response duties resulting from an accident involving three nuclear weapons at Palomares, Spain on January 17, 1966. Individual may have been exposed to weapons materials (primarily plutonium-239) by inhalation and ingestion from contaminated weapon and aircraft debris, lands, and vegetation. Primary activities included search, radiological monitoring, recovery of accident debris, and processing for disposal.

Previous Intake/Dose Assessments:

This assessment applies to Palomares accident activities only. No previous intakes or doses were considered.

Other Information:

None.
Radionuclide(s): ${ }^{239} \mathrm{Pu}$.

Assumptions/Basis/Data Sources:

Acute inhalation intake of Pu-239; 100% Class Y; $1 \mu \mathrm{~m}$ AMAD particle size on $2 / 13 / 66$. The date is the midpoint of the period on station from $2 / 1 / 66$ to $2 / 27 / 66$.

Inhalation was assumed as the major route of entry because the primary contaminant was created by explosion and fire and deposited in sandy soil and on buildings and plants. Conditions were generally windy and significant activity was underway.

Dose was determined entirely from modeling intake based on the following urinalysis results for this individual. This individual's sample was identified for a follow-up analysis using alpha spectrometry after the initial gross alpha result was reviewed. That is, the initial urine sample for this individual was reprocessed radiochemically for alpha spectrometry. Results of the follow-up alpha spectrometry analysis are reported below and were used in preparing the dose estimate.

Sample	Analysis*	Sample Date	Result (pCi/day)	Error (pCi/day)	Included
$66-3411$	AS	$2 / 27 / 66$	0.122	0.045	\checkmark
$66-3411$	G	$2 / 27 / 66$	NR	NR	
$66-1494$	AS	$2 / 28 / 66$	0.282	0.116	\checkmark
$66-1494$	G	$2 / 28 / 66$	1.52	0.310	
* G means gross alpha counting; AS means alpha spectrometry;	NR means no result reported.				

Intakes and estimates of dose were prepared using CINDY Version 1.4 and LUDEP Version 2.05.
Intake was estimated using the Jones excretion model in CINDY and LUDEP.
Inhalation intake was estimated using the ICRP 66 respiratory tract model in LUDEP.
CINDY estimated dose derived using the ICRP 30, Part 4, General Systemic Model and weighting factors; and LUDEP used the recommendations of ICRP 60.

Modeling:

CINDY and LUDEP were used to estimate the intake and dose with the following results:

Model	Intake (pCi)	CEDE (rem/Sv)
CINDY	190,000	$58 / 0.58$
LUDEP	616,000	$43 / 0.43$

Doses to individual organs and estimation of the effective dose equivalent using CINDY reported the following results:

Organ	Dose Equivalent (rem/Sv)	Weighting Factors	Weighted Organ Dose Equivalent (rem/Sv)
Testes	$8.5 \mathrm{E}+00 / 8.5 \mathrm{E}-02$	$2.5 \mathrm{E}-01$	$2.1 \mathrm{E}+00 / 2.1 \mathrm{E}-02$
Breast	$2.8 \mathrm{E}-04 / 2.8 \mathrm{E}-06$	$1.5 \mathrm{E}-01$	$4.2 \mathrm{E}-05 / 4.2 \mathrm{E}-07$
Red Marrow	$4.6 \mathrm{E}+01 / 4.6 \mathrm{E}-01$	$1.2 \mathrm{E}-01$	$5.5 \mathrm{E}+00 / 5.5 \mathrm{E}-02$
Lung	$2.2 \mathrm{E}+02 / 2.2 \mathrm{E}+00$	$1.2 \mathrm{E}-01$	$2.6 \mathrm{E}+01 / 2.6 \mathrm{E}-01$
Thyroid	$2.7 \mathrm{E}-04 / 2.7 \mathrm{E}-06$	$3.0 \mathrm{E}-02$	$8.0 \mathrm{E}-06 / 8.0 \mathrm{E}-08$
Bone Surface	$5.9 \mathrm{E}+02 / 5.9 \mathrm{E}+00$	$3.0 \mathrm{E}-02$	$1.8 \mathrm{E}+01 / 1.8 \mathrm{E}-01$
Liver	$1.1 \mathrm{E}+02 / 1.1 \mathrm{E}+00$	$6.0 \mathrm{E}-02$	$6.4 \mathrm{E}+00 / 6.4 \mathrm{E}-02$
Other	$1.0 \mathrm{E}+01 / 1.0 \mathrm{E}-01$	$6.0 \mathrm{E}-02$	$6.0 \mathrm{E}-01 / 6.0 \mathrm{E}-03$
Lower Large Intestine	$2.2 \mathrm{E}-02 / 2.2 \mathrm{E}-04$	$6.0 \mathrm{E}-02$	$1.3 \mathrm{E}-03 / 1.3 \mathrm{E}-05$
Upper Large Intestine	$7.2 \mathrm{E}-03 / 7.2 \mathrm{E}-05$	$6.0 \mathrm{E}-02$	$4.3 \mathrm{E}-04 / 4.3 \mathrm{E}-06$
Small Intestine	$1.5 \mathrm{E}-03 / 1.5 \mathrm{E}-05$	$6.0 \mathrm{E}-02$	$8.9 \mathrm{E}-05 / 8.9 \mathrm{E}-07$
Effective Dose Equivalent			$5.8 \mathrm{E}+01 / 5.8 \mathrm{E}-01$

Two urine samples were analyzed by gross alpha counting and alpha spectrometry. The gross alpha analyses was not included in the modeling since an alpha spectrometry result was available for the each sample. The results were fit using CINDY and the Jones excretion model, to estimate an intake (190,000 pCi), organ doses, and a CEDE ($58 \mathrm{rem} / 0.58 \mathrm{~Sv}$; ICRP-30) as shown above. LUDEP was also used to estimate an intake of $616,000 \mathrm{pCi}$ and a CEDE (ICRP-60) of 43 rem (0.43 Sv).

Conclusion:

Based on the results of intake estimates and dose calculations, this individual received an estimated intake of about $190,000 \mathrm{pCi}$ of ${ }^{239} \mathrm{Pu}$ resulting in a 50 -year committed effective dose equivalent of 58 rem (0.58 Sv). That dose is more than the cumulative dose (7 rem) from a lifetime (70 years) of exposure at the
current level (0.100 rem) for members of the public. It is more than the working lifetime limit of 50 rem recommended by the National Council on Radiation Protection and Measurements (NCRP). Serious health effects are not normally associated with these dose levels. However, follow-up urine sampling should be considered to provide additional assessment of the exposure.

Prepared By:

Name:

Signature: \qquad

Peer Reviewed By:

Name: \qquad
Signature: \qquad Date: \qquad

Release of this document is restricted under the provisions of the Privacy Act, 5 U.S.C. 552(a). C.2-339

łoday uo!̣enjenヨ asoa

(b) (6)

Internal Dosimetry Evaluation Form

RECOMMENDATIONS:

Additional Bioassay Required
Suggested Sampling Frequency:

Work Restrictions:
N/A

Internal Dosimetry Case Narrative

Identification:

Name:

SSN:

Incidents:

Individual participated on site in response duties resulting from an accident involving three nuclear weapons at Palomares, Spain on January 17, 1966. Individual may have been exposed to weapons materials (primarily plutonium-239) by inhalation and ingestion from contaminated weapon and aircraft debris, lands, and vegetation. Primary activities included search, radiological monitoring, recovery of accident debris, and processing for disposal.

Previous Intake/Dose Assessments:

This assessment applies to Palomares accident activities only. No previous intakes or doses were considered.

Other Information:

None.

$$
\text { Radionuclide(s): }{ }^{239} \mathrm{Pu} \text {. }
$$

Assumptions/Basis/Data Sources:

Acute inhalation intake of Pu-239; 100% Class $\mathrm{Y} ; 1 \mu \mathrm{~m}$ AMAD particle size on $2 / 15 / 66$. The date is the midpoint of the period on station from 2/5/66 to 2/26/66.

Inhalation was assumed as the major route of entry because the primary contaminant was created by explosion and fire and deposited in sandy soil and on buildings and plants. Conditions were generally windy and significant activity was underway.

Dose was determined entirely from modeling intake based on the following urinalysis results for this individual. This individual's sample was identified for a follow-up analysis using alpha spectrometry after the initial gross alpha result was reviewed. That is, the initial urine sample for this individual was reprocessed radiochemically for alpha spectrometry. Results of the follow-up alpha spectrometry analysis are reported below and were used in preparing the dose estimate.

Sample	Analysis*	Sample Date	Result (pCi/day)	Error (pCi/day)	Included
$66-1419$	AS	$2 / 26 / 66$	0.163	0.024	\checkmark
$66-1419$	G	$2 / 26 / 66$	0.731	0.216	
G means gross alpha counting; AS means alpha spectrometry.					

Intakes and estimates of dose were prepared using CINDY Version 1.4 and LUDEP Version 2.05.
Intake was estimated using the Jones excretion model in CINDY and LUDEP.
Inhalation intake was estimated using the ICRP 66 respiratory tract model in LUDEP.
CINDY estimated dose derived using the ICRP 30, Part 4, General Systemic Model and weighting factors; and LUDEP used the recommendations of ICRP 60.

Modeling:

CINDY and LUDEP were used to estimate the intake and dose with the following results:

Model	Intake (pCi)	CEDE (rem/Sv)
CLNDY	140,000	$43 / 0.43$
LUDEP	697,000	$49 / 0.49$

Doses to individual organs and estimation of the effective dose equivalent using CINDY reported the following results:

Organ	Dose Equivalent $($ rem/Sv)	Weighting Factors	Weighted Organ Dose Equivalent (rem/Sv)
Testes	$6.2 \mathrm{E}+00 / 6.2 \mathrm{E}-02$	$2.5 \mathrm{E}-01$	$1.6 \mathrm{E}+00 / 1.6 \mathrm{E}-02$
Breast	$2.1 \mathrm{E}-04 / 2.1 \mathrm{E}-06$	$1.5 \mathrm{E}-01$	$3.1 \mathrm{E}-05 / 3.1 \mathrm{E}-07$
Red Marrow	$3.4 \mathrm{E}+01 / 3.4 \mathrm{E}-01$	$1.2 \mathrm{E}-01$	$4.0 \mathrm{E}+00 / 4.0 \mathrm{E}-02$
Lung	$1.6 \mathrm{E}+02 / 1.6 \mathrm{E}+00$	$1.2 \mathrm{E}-01$	$1.9 \mathrm{E}+01 / 1.9 \mathrm{E}-01$
Thyroid	$2.0 \mathrm{E}-04 / 2.0 \mathrm{E}-06$	$3.0 \mathrm{E}-02$	$5.9 \mathrm{E}-06 / 5.9 \mathrm{E}-08$
Bone Surface	$4.4 \mathrm{E}+02 / 4.4 \mathrm{E}+00$	$3.0 \mathrm{E}-02$	$1.3 \mathrm{E}+01 / 1.3 \mathrm{E}-01$
Liver	$7.8 \mathrm{E}+01 / 7.8 \mathrm{E}-01$	$6.0 \mathrm{E}-02$	$4.7 \mathrm{E}+00 / 4.7 \mathrm{E}-02$
Other	$7.4 \mathrm{E}+00 / 7.4 \mathrm{E}-02$	$6.0 \mathrm{E}-02$	$4.4 \mathrm{E}-01 / 4.4 \mathrm{E}-03$
Lower Large Intestine	$1.6 \mathrm{E}-02 / 1.6 \mathrm{E}-04$	$6.0 \mathrm{E}-02$	$9.5 \mathrm{E}-04 / 9.5 \mathrm{E}-06$
Upper Large Intestine	$5.3 \mathrm{E}-03 / 5.3 \mathrm{E}-05$	$6.0 \mathrm{E}-02$	$3.2 \mathrm{E}-04 / 3.2 \mathrm{E}-06$
Small Intestine	$1.1 \mathrm{E}-03 / 1.1 \mathrm{E}-05$	$6.0 \mathrm{E}-02$	$6.5 \mathrm{E}-05 / 6.5 \mathrm{E}-07$
Effective Dose Equivalent			$4.3 \mathrm{E}+01 / 4.3 \mathrm{E}-01$

One urine sample was analyzed by gross alpha counting and alpha spectrometry. The gross alpha analysis was not included in the modeling since an alpha spectrometry result was available for the same sample. The result was fit using CINDY and the Jones excretion model, to estimate an intake ($140,000 \mathrm{pCi}$), organ doses, and a CEDE ($43 \mathrm{rem} / 0.43 \mathrm{~Sv}$; ICRP-30) as shown above. LUDEP was also used to estimate an intake of $697,000 \mathrm{pCi}$ and a CEDE (ICRP-60) of $49 \mathrm{rem}(0.49 \mathrm{~Sv})$.

Conclusion:

Based on the results of intake estimates and dose calculations, this individual received an estimated intake of about $140,000 \mathrm{pCi}$ of ${ }^{239} \mathrm{Pu}$ resulting in a 50 -year committed effective dose equivalent of $43 \mathrm{rem}(0.43$ Sv). That dose is more than the cumulative dose (7 rem) from a lifetime (70 years) of exposure at the
current level $(0.100 \mathrm{rem})$ for members of the public. It is less than the working lifetime limit of 50 rem recommended by the National Council on Radiation Protection and Measurements (NCRP). Serious health effects are not associated with that dose level. However, follow-up urine sampling now could be considered to provide additional assessment of the exposure.

Prepared By:
Name: \qquad
Signature: \qquad

Peer Reviewed By:

Name: \qquad
Signature: \qquad Date: \qquad

为 -

Internal Dosimetry Evaluation Form

RECOMMENDATIONS:

Additional Bioassay Required
Suggested Sampling Frequency:\square UrinalysisFecal
\square In Vivo
Work Restrictions:

Internal Dosimetry Case Narrative

Identification:

Name:
SSN:

Incidents:

Individual participated on site in response duties resulting from an accident involving three nuclear weapons at Palomares, Spain on January 17, 1966. Individual may have been exposed to weapons materials (primarily plutonium-239) by inhalation and ingestion from contaminated weapon and aircraft debris, lands, and vegetation. Primary activities included search, radiological monitoring, recovery of accident debris, and processing for disposal.

Previous Intake/Dose Assessments:

This assessment applies to Palomares accident activities only. No previous intakes or doses were considered.

Other Information:

None.
Radionuclide(s): ${ }^{239} \mathrm{Pu}$.

Assumptions/Basis/Data Sources:

Acute inhalation intake of Pu-239; 100% Class $\mathrm{Y} ; 1 \mu \mathrm{~m}$ AMAD particle size on $2 / 18 / 66$. The date is the midpoint of the period on station from $1 / 27 / 66$ to $3 / 13 / 66$.

Inhalation was assumed as the major route of entry because the primary contaminant was created by explosion and fire and deposited in sandy soil and on buildings and plants. Conditions were generally windy and significant activity was underway.

Dose was determined entirely from modeling intake based on the following urinalysis results for this individual. This individual's sample was identified for a follow-up analysis using alpha spectrometry after the initial gross alpha result was reviewed. That is, the initial urine sample for this individual was reprocessed radiochemically for alpha spectrometry. Results of the follow-up alpha spectrometry analysis are reported below and were used in preparing the dose estimate.

Sample	Analysis*	Sample Date	Result (pCi/day)	Error (pCi/day)	Included
$66-2007$	G	$3 / 14 / 66$	0.180	0.100	\checkmark
$66-3402$	AS	$6 / 5 / 66$	0.049	0.037	\checkmark
$66-3402$	G	$6 / 5 / 66$	NR	NR	

* G means gross alpha counting; AS means alpha spectrometry; NR means no result reported.

Intakes and estimates of dose were prepared using CINDY Version 1.4 and LUDEP Version 2.05.
Intake was estimated using the Jones excretion model in CINDY and LUDEP.
Inhalation intake was estimated using the ICRP 66 respiratory tract model in LUDEP.
CINDY estimated dose derived using the ICRP 30, Part 4, General Systemic Model and weighting factors; and LUDEP used the recommendations of ICRP 60.

Modeling:

CINDY and LUDEP were used to estimate the intake and dose with the following results:

Model	Intake (pCi)	CEDE (rem/Sv)
CINDY	140,000	$43 / 0.43$
LUDEP	265,000	$19 / 0.19$

Doses to individual organs and estimation of the effective dose equivalent using CINDY reported the following results:

Organ	Dose Equivalent $($ rem $/$ Sv $)$	Weighting Factors	Weighted Organ Dose Equivalent $($ rem $/$ Sv
Testes	$6.2 \mathrm{E}+00 / 6.2 \mathrm{E}-02$	$2.5 \mathrm{E}-01$	$1.6 \mathrm{E}+00 / 1.6 \mathrm{E}-02$
Breast	$2.1 \mathrm{E}-04 / 2.1 \mathrm{E}-06$	$1.5 \mathrm{E}-01$	$3.1 \mathrm{E}-05 / 3.1 \mathrm{E}-07$
Red Marrow	$3.4 \mathrm{E}+01 / 3.4 \mathrm{E}-01$	$1.2 \mathrm{E}-01$	$4.0 \mathrm{E}+00 / 4.0 \mathrm{E}-02$
Lung	$1.6 \mathrm{E}+02 / 1.6 \mathrm{E}+00$	$1.2 \mathrm{E}-01$	$1.9 \mathrm{E}+01 / 1.9 \mathrm{E}-01$
Thyroid	$2.0 \mathrm{E}-04 / 2.0 \mathrm{E}-06$	$3.0 \mathrm{E}-02$	$5.9 \mathrm{E}-06 / 5.9 \mathrm{E}-08$
Bone Surface	$4.4 \mathrm{E}+02 / 4.4 \mathrm{E}+00$	$3.0 \mathrm{E}-02$	$1.3 \mathrm{E}+01 / 1.3 \mathrm{E}-01$
Liver	$7.8 \mathrm{E}+01 / 7.8 \mathrm{E}-01$	$6.0 \mathrm{E}-02$	$4.7 \mathrm{E}+00 / 4.7 \mathrm{E}-02$
Other	$7.4 \mathrm{E}+00 / 7.4 \mathrm{E}-02$	$6.0 \mathrm{E}-02$	$4.4 \mathrm{E}-01 / 4.4 \mathrm{E}-03$
Lower Large Intestine	$1.6 \mathrm{E}-02 / 1.6 \mathrm{E}-04$	$6.0 \mathrm{E}-02$	$9.5 \mathrm{E}-04 / 9.5 \mathrm{E}-06$
Upper Large Intestine	$5.3 \mathrm{E}-03 / 5.3 \mathrm{E}-05$	$6.0 \mathrm{E}-02$	$3.2 \mathrm{E}-04 / 3.2 \mathrm{E}-06$
Small Intestine	$1.1 \mathrm{E}-03 / 1.1 \mathrm{E}-05$	$6.0 \mathrm{E}-02$	$6.5 \mathrm{E}-05 / 6.5 \mathrm{E}-07$
Effective Dose Equivalent			$4.3 \mathrm{E}+01 / 4.3 \mathrm{E}-01$

One urine sample was analyzed by gross alpha counting only, and the other was analyzed by both gross alpha counting and alpha spectrometry. For the sample analyzed with both methods, the gross alpha analysis was not included in the modeling since no result was reported and an alpha spectrometry result was available for the same sample. The results were fit using CINDY and the Jones excretion model, to estimate an intake ($140,000 \mathrm{pCi}$), organ doses, and a CEDE ($43 \mathrm{rem} / 0.43 \mathrm{~Sv}$; ICRP-30) as shown above. LUDEP was also used to estimate an intake of $265,000 \mathrm{pCi}$ and a CEDE (ICRP-60) of 19 rem (0.19 Sv).

Conclusion:

Based on the results of intake estimates and dose calculations, this individual received an estimated intake of about $140,000 \mathrm{pCi}$ of ${ }^{239} \mathrm{Pu}$ resulting in a 50 -year committed effective dose equivalent of 43 rem (0.43 Sv). That dose is more than the cumulative dose (7 rem) from a lifetime (70 years) of exposure at the
current level (0.100 rem) for members of the public. It is less than the working lifetime limit of 50 rem recommended by the National Council on Radiation Protection and Measurements (NCRP). Serious health effects are not associated with that dose level. However, follow-up urine sampling now could be considered to provide additional assessment of the exposure.

Prepared By:

Name: \qquad
Signature: \qquad

Peer Reviewed By:

Name: \qquad
Signature: \qquad Date: \qquad

Release of this document is restricted under the provisions of the Privacy Act, 5 U.S.C. 552(a). C.2-353

\therefore я

यक

Internal Dosimetry Evaluation Form

NAME: ${ }^{(0)}$ (6)	SSN: ${ }^{(\mathrm{la})(6)}$			
	$\begin{aligned} & \square \text { Injection } \\ & \square \text { Absorption } \\ & \square \text { Not applicable } \end{aligned}$	INTAKE DATE OR PERIOD: 2/4/66 through 2/14/66, onsite 2/9/66		
SUMMARY OF EXPOSURE C Radionuclides/Respiratory Class Date or Period of Evaluated Data Duration of Exposure: Unknown Location of Exposure: Camp Wi	ITIONS: icle Size: ${ }^{239} \mathrm{Pu} / 1$ samples, 2/17/66 an near Palomares,	\% Class Y/I 3/5/66		
EVALUATION DATA: Air Sampling Health Physics Survey Data Bioassay - Urinalysis Fecal Nasal Smears In Vivo	\square Attached \square Attached $\boxed{\text { Attached }}$ \square Attached $\boxed{\text { Attached }}$ \square Attached	\square In Process	区 Unavailable U Unavailable Unavailable Unavailable Unavailable Unavailable	
Medical Treatment: Skin Decontamination: Decorporation: Catharsis: Surgical excision:	\square Yes \square Yes \square Yes \square Yes	$\boxed{\text { No }}$ Date: Q No Agent X No Agent: 区 No Date:		Date: Date: \qquad

EVALUATION METHODOLOGY:
Assumptions: Acute inhalation intake of ${ }^{239} \mathrm{Pu}, 100 \%$ Class $\mathrm{Y}, 1 \mu \mathrm{~m}$ AMAD particle size on 2/9/66
Code/Model used for: Intake Estimate: CINDY, Ver. 1.4/JONES
Dose Estimate: CINDY, Ver. 1.4/ICRP 30, Part 4, General Systemic Model
RESULTS SUMMARY
Estimated Intake Activity (pCi): 120000
50 YR CEDE (rem) : 55 (0.55 Sv)
Organ Dose Equivalent Summary 50 YR CDE (rem/Sv)
Bone Surface 370/3.7
Lung 140/1.4
Liver 67/0.67
Red Marrow 29/0.29
Other 6.3/0.063
$\begin{array}{ll}\text { Testes } & 5.4 / 0.054\end{array}$

DOSE ASSESSOR:	DATE:	PEER REVIEWER:
Signature:		DATE:
Print Name:	Signature:	
SSN:	Print Name:	

RECOMIMIENDATIONS:

Additional Bioassay Required
Suggested Sampling Frequency: $\quad \square$ Urinalysis $\quad \square$ Fecal $\quad \square$ In Vivo

Work Restrictions: N/A

Release of this document is restricted under the provisions of the Privacy Act, 5 U.S.C. 552(a). C.2-356

Internal Dosimetry Case Narrative

Identification:

Name:
SSN:

Incidents:

Individual participated on site in response duties resulting from an accident involving three nuclear weapons at Palomares, Spain on January 17, 1966. Individual may have been exposed to weapons materials (primarily plutonium-239) by inhalation and ingestion from contaminated weapon and aircraft debris, lands, and vegetation. Primary activities included search, radiological monitoring, recovery of accident debris, and processing for disposal.

Previous Intake/Dose Assessments:

This assessment applies to Palomares accident activities only. No previous intakes or doses were considered.

Other Information:

None.
Radionuclide(s): ${ }^{239} \mathrm{Pu}$.

Assumptions/Basis/Data Sources:

Acute inhalation intake of Pu-239; 100% Class $\mathrm{Y} ; 1 \mu \mathrm{~m}$ AMAD particle size on 2/9/66. The date is the midpoint of the period on station from 2/4/66 to 2/14/66 .

Inhalation was assumed as the major route of entry because the primary contaminant was created by explosion and fire and deposited in sandy soil and on buildings and plants. Conditions were generally windy and significant activity was underway.

Dose was determined entirely from modeling intake based on the following urinalysis results for this individual. This individual's sample was identified for a follow-up analysis using alpha spectrometry after the initial gross alpha result was reviewed. That is, the initial urine sample for this individual was reprocessed radiochemically for alpha spectrometry. Results of the follow-up alpha spectrometry analysis are reported below and were used in preparing the dose estimate.

Sample	Analysis*	Sample Date	Result (pCi/day)	Error (pCi/day)	Included
$66-1122$	G	$2 / 17 / 66$	0.190	0.160	\checkmark
$66-1554$	AS	$3 / 5 / 66$	0.080	0.016	\checkmark
$66-1554$	G	$3 / 5 / 66$	1.50	0.330	
$*$ G means gross alpha counting; AS means alpha spectrometry.					

A nasal swipe was also reported (sample \#66-1656) from \square on $3 / 1 / 66$; however, no result was available.

Intakes and estimates of dose were prepared using CINDY Version 1.4 and LUDEP Version 2.05.
Intake was estimated using the Jones excretion model in CINDY and LUDEP.
Inhalation intake was estimated using the ICRP 66 respiratory tract model in LUDEP.
CINDY estimated dose derived using the ICRP 30, Part 4, General Systemic Model and weighting factors; and LUDEP used the recommendations of ICRP 60.

Modeling:

CINDY and LUDEP were used to estimate the intake and dose with the following results:

Model	Intake (pCi)	CEDE (rem/Sv)
CINDY	120,000	$37 / 0.37$
LUDEP	348,000	$24 / 0.24$

Doses to individual organs and estimation of the effective dose equivalent using CINDY reported the following results:

Organ	Dose Equivalent $(\mathrm{rem} / \mathrm{Sv})$	Weighting Factors	Weighted Organ Dose Equivalent $(\mathrm{rem} / \mathrm{Sv})$
Testes	$5.4 \mathrm{E}+00 / 5.4 \mathrm{E}-02$	$2.5 \mathrm{E}-01$	$1.3 \mathrm{E}+00 / 1.3 \mathrm{E}-02$
Breast	$1.8 \mathrm{E}-04 / 1.8 \mathrm{E}-06$	$1.5 \mathrm{E}-01$	$2.7 \mathrm{E}-05 / 2.7 \mathrm{E}-07$
Red Marrow	$2.9 \mathrm{E}+01 / 2.9 \mathrm{E}-01$	$1.2 \mathrm{E}-01$	$3.5 \mathrm{E}+00 / 3.5 \mathrm{E}-02$
Lung	$1.4 \mathrm{E}+02 / 1.4 \mathrm{E}+00$	$1.2 \mathrm{E}-01$	$1.6 \mathrm{E}+01 / 1.6 \mathrm{E}-01$
Thyroid	$1.7 \mathrm{E}-04 / 1.7 \mathrm{E}-06$	$3.0 \mathrm{E}-02$	$5.0 \mathrm{E}-06 / 5.0 \mathrm{E}-08$
Bone Surface	$3.7 \mathrm{E}+02 / 3.7 \mathrm{E}+00$	$3.0 \mathrm{E}-02$	$1.1 \mathrm{E}+01 / 1.1 \mathrm{E}-01$
Liver	$6.7 \mathrm{E}+01 / 6.7 \mathrm{E}-01$	$6.0 \mathrm{E}-02$	$4.0 \mathrm{E}+00 / 4.0 \mathrm{E}-02$
Other	$6.3 \mathrm{E}+00 / 6.3 \mathrm{E}-02$	$6.0 \mathrm{E}-02$	$3.8 \mathrm{E}-01 / 3.8 \mathrm{E}-03$
Lower Large Intestine	$1.4 \mathrm{E}-02 / 1.4 \mathrm{E}-04$	$6.0 \mathrm{E}-02$	$8.2 \mathrm{E}-04 / 8.2 \mathrm{E}-06$
Upper Large Intestine	$4.6 \mathrm{E}-03 / 4.6 \mathrm{E}-05$	$6.0 \mathrm{E}-02$	$2.7 \mathrm{E}-04 / 2.7 \mathrm{E}-06$
Small Intestine	$9.4 \mathrm{E}-04 / 9.4 \mathrm{E}-06$	$6.0 \mathrm{E}-02$	$5.6 \mathrm{E}-05 / 5.6 \mathrm{E}-07$
Effective Dose Equivalent			$3.7 \mathrm{E}+01 / 3.7 \mathrm{E}-01$

One urine sample was analyzed by gross alpha counting, and the other was analyzed by both gross alpha counting and alpha spectrometry. The gross alpha analysis for the second sample was not included in the modeling since an alpha spectrometry result was available for the same sample. The results were fit using CINDY and the Jones excretion model, to estimate an intake ($120,000 \mathrm{pCi}$), organ doses, and a CEDE (37 rem/0.37 Sv; ICRP-30) as shown above. LUDEP was also used to estimate an intake of $348,000 \mathrm{pCi}$ and a CEDE (ICRP-60) of 24 rem (0.24 Sv).

[^5]
Conclusion:

Based on the results of intake estimates and dose calculations, this individual received an estimated intake of about $120,000 \mathrm{pCi}$ of ${ }^{239} \mathrm{Pu}$ resulting in a 50 -year committed effective dose equivalent of $37 \mathrm{rem}(0.37$ Sv). That dose is more than the cumulative dose (7 rem) from a lifetime (70 years) of exposure at the current level (0.100 rem) for members of the public. It is less than the working lifetime limit of 50 rem recommended by the National Council on Radiation Protection and Measurements (NCRP). Serious health effects are not associated with that dose level. However, follow-up urine sampling now could be considered to provide additional assessment of the exposure.

Prepared By:

Name: \qquad
Signature: \qquad

Peer Reviewed By:

Name: \qquad
Signature: \qquad Date: \qquad

$1 / 2 l$

Internal Dosimetry Evaluation Form

NAME: (b) (6)	SSN: NA			
	Injection Absorption Not applicable	INTAKE DATE OR PERIOD: 2/5/66 through 2/26/66, onsite 2/15/66		
SUMMMARY OF EXPOSURE C Radionuclides/Respiratory Clas Date or Period of Evaluated Dat Duration of Exposure: Unknown Location of Exposure: Camp W	ITIONS: icle Size: ${ }^{239} \mathrm{Pu} / 1$ ample, 2/26/66 near Palomares,	\% Class Y/1 μ ain		
EVALUATION DATA: Air Sampling Health Physics Survey Data Bioassay - Urinalysis Fecal Nasal Smears In Vivo	\square Attached \square Attached Q Attached \square Attached \square Attached \square Attached	In Process In Process In Process In Process In Process In Process	X Unavailable X Unavailable Unavailable Unavailable Unavailable Unavailable	
Medical Treatment: Skin Decontamination: Decorporation: Catharsis: Surgical excision:	\square Yes \square Yes \square Yes \square Yes	\boxtimes No Date: \boxed{N} No Agent: $\boxed{\text { No }}$ Agent: \boxtimes No Date:		Date: Date:

EVALUATION METHODOLOGY:

Assumptions: Acute inhalation intake of ${ }^{239} \mathrm{Pu}, 100 \%$ Class $\mathrm{Y}, 1 \mu \mathrm{~m}$ AMAD particle size on $2 / 15 / 66$
$\begin{array}{ll}\text { Code/Model used for: } & \begin{array}{l}\text { Intake Estimate: CINDY, Ver. 1.4/JONES } \\ \\ \\ \\ \text { Dose Estimate: CINDY, Ver. 1.4/ICRP 30, Part 4, General Systemic Model }\end{array}\end{array}$
RESULTS SUMMARY

Estimated Intake Activity (pCi): 185000		
50 YR CEDE (rem) : $55(0.55$ Sv)	50 YR CDE (rem/Sv)	
Organ Dose Equivalent Summary	$560 / 5.6$	
Bone Surface	$210 / 2.1$	
Lung	$100 / 1$	
Liver	$43 / 0.43$	
Red Marrow	$9.5 / 0.095$	
Other	$8 / 0.08$	
Testes	PEER REVIEWER:	DATE:
DOSE ASSESSOR:		

Signature: \qquad Signature: \qquad
Print Name: \qquad
SSN:
Print Name: \qquad

RECOMMIENDATIONS:

Additional Bioassay Required
Suggested Sampling Frequency:

Work Restrictions: N/A

Release of this document is restricted under the provisions of the Privacy Act, 5 U.S.C. 552(a). C.2-363

Internal Dosimetry Case Narrative

Identification:

Incidents:

Individual participated on site in response duties resulting from an accident involving three nuclear weapons at Palomares, Spain on January 17, 1966. Individual may have been exposed to weapons materials (primarily plutonium-239) by inhalation and ingestion from contaminated weapon and aircraft debris, lands, and vegetation. Primary activities included search, radiological monitoring, recovery of accident debris, and processing for disposal.

Previous Intake/Dose Assessments:

This assessment applies to Palomares accident activities only. No previous intakes or doses were considered.

Other Information:

None.
Radionuclide(s): ${ }^{239} \mathrm{Pu}$.

Assumptions/Basis/Data Sources:

Acute inhalation intake of $\mathrm{Pu}-239 ; 100 \%$ Class $\mathrm{Y} ; 1 \mu \mathrm{~m}$ AMAD particle size on $2 / 15 / 66$. The date is the midpoint of the period on station from 2/5/66 to 2/26/66.

Inhalation was assumed as the major route of entry because the primary contaminant was created by explosion and fire and deposited in sandy soil and on buildings and plants. Conditions were generally windy and significant activity was underway.

Dose was determined entirely from modeling intake based on the following urinalysis results for this individual. This individual's sample was identified for a follow-up analysis using alpha spectrometry after the initial gross alpha result was reviewed. That is, the initial urine sample for this individual was reprocessed radiochemically for alpha spectrometry. Results of the follow-up alpha spectrometry analysis are reported below and were used in preparing the dose estimate.

Sample	Analysis*	Sample Date	Result $(\mathrm{pCi} /$ day $)$	Error $(\mathrm{pCi} /$ day $)$	Included
$66-1438$	AS	$2 / 26 / 66$	0.208	0.086	\checkmark
$66-1438$	G	$2 / 26 / 66$	1.51	0.310	
G means gross alpha counting; AS means alpha spectrometry.					

[^6]Revised Dose Evaluation Report

Intakes and estimates of dose were prepared using CINDY Version 1.4 and LUDEP Version 2.05.
Intake was estimated using the Jones excretion model in CINDY and LUDEP.
Inhalation intake was estimated using the ICRP 66 respiratory tract model in LUDEP.
CINDY estimated dose derived using the ICRP 30, Part 4, General Systemic Model and weighting factors; and LUDEP used the recommendations of ICRP 60.

Modeling:

CINDY and LUDEP were used to estimate the intake and dose with the following results:

Model	Intake (pCi)	CEDE $(\mathrm{rem} / \mathrm{Sv})$
CINDY	185,000	$55 / 0.55$
LUDEP	888,000	$62 / 0.62$

Doses to individual organs and estimation of the effective dose equivalent using CINDY reported the following results:

Organ	Dose Equivalent $($ rem/Sv)	Weighting Factors	Weighted Organ Dose Equivalent (rem/Sv)
Testes	$8.0 \mathrm{E}+00 / 8.0 \mathrm{E}-02$	$2.5 \mathrm{E}-01$	$2.0 \mathrm{E}+00 / 2.0 \mathrm{E}-02$
Breast	$2.7 \mathrm{E}-04 / 2.7 \mathrm{E}-06$	$1.5 \mathrm{E}-01$	$4.0 \mathrm{E}-05 / 4.0 \mathrm{E}-07$
Red Marrow	$4.3 \mathrm{E}+01 / 4.3 \mathrm{E}-01$	$1.2 \mathrm{E}-01$	$5.2 \mathrm{E}+00 / 5.2 \mathrm{E}-02$
Lung	$2.1 \mathrm{E}+02 / 2.1 \mathrm{E}+00$	$1.2 \mathrm{E}-01$	$2.5 \mathrm{E}+01 / 2.5 \mathrm{E}-01$
Thyroid	$2.5 \mathrm{E}-04 / 2.5 \mathrm{E}-06$	$3.0 \mathrm{E}-02$	$7.5 \mathrm{E}-06 / 7.5 \mathrm{E}-08$
Bone Surface	$5.6 \mathrm{E}+02 / 5.6 \mathrm{E}+00$	$3.0 \mathrm{E}-02$	$1.7 \mathrm{E}+01 / 1.7 \mathrm{E}-01$
Liver	$1.0 \mathrm{E}+02 / 1.0 \mathrm{E}+00$	$6.0 \mathrm{E}-02$	$6.0 \mathrm{E}+00 / 6.0 \mathrm{E}-02$
Other	$9.5 \mathrm{E}+00 / 9.5 \mathrm{E}-02$	$6.0 \mathrm{E}-02$	$5.7 \mathrm{E}-01 / 5.7 \mathrm{E}-03$
Lower Large Intestine	$2.0 \mathrm{E}-02 / 2.0 \mathrm{E}-04$	$6.0 \mathrm{E}-02$	$1.2 \mathrm{E}-03 / 1.2 \mathrm{E}-05$
Upper Large Intestine	$6.9 \mathrm{E}-03 / 6.9 \mathrm{E}-05$	$6.0 \mathrm{E}-02$	$4.1 \mathrm{E}-04 / 4.1 \mathrm{E}-06$
Small Intestine	$1.4 \mathrm{E}-03 / 1.4 \mathrm{E}-05$	$6.0 \mathrm{E}-02$	$8.4 \mathrm{E}-05 / 8.4 \mathrm{E}-07$
Effective Dose Equivalent			$5.5 \mathrm{E}+01 / 5.5 \mathrm{E}-01$

One urine sample was analyzed by gross alpha counting and alpha spectrometry. The gross alpha analysis was not included in the modeling since an alpha spectrometry result was available for the same sample. The result was fit using CINDY and the Jones excretion model, to estimate an intake ($185,000 \mathrm{pCi}$), organ doses, and a CEDE ($55 \mathrm{rem} / 0.55 \mathrm{~Sv}$; ICRP-30) as shown above. LUDEP was also used to estimate an intake of $888,000 \mathrm{pCi}$ and a CEDE (ICRP-60) of $62 \mathrm{rem}(0.62 \mathrm{~Sv})$.

Conclusion:

Based on the results of intake estimates and dose calculations, this individual received an estimated intake of about $185,000 \mathrm{pCi}$ of ${ }^{239} \mathrm{Pu}$ resulting in a 50 -year committed effective dose equivalent of $55 \mathrm{rem}(0.55$ Sv). That dose is more than the cumulative dose (7 rem) from a lifetime (70 years) of exposure at the current level (0.100 rem) for members of the public. It is 10% more than the working lifetime limit of 50
rem recommended by the National Council on Radiation Protection and Measurements (NCRP). Serious health effects are not normally associated with these dose levels. However, follow-up urine sampling should be considered to provide additional assessment of the exposure.

Prepared By:

Name: \qquad
Signature: \qquad Date: \qquad

Peer Reviewed By:

Name: \qquad
Signature: \qquad Date: \qquad

Revised Dose Evaluation Report April 2001

Internal Dosimetry Evaluation Form

EVALUATION DATA：					
Air Sampling	\square Attached	\square In Process		区 Unavailable	
Health Physics Survey Data	\square Attached	\square In Process			
Bioassay－Urinalysis	\triangle Attached	\square In Process		\square Unavailable	
Fecal	\square Attached	\square In Process		区 Unavailable	
Nasal Smears	\square Attached	\square In Process		Unavailable	
In Vivo	\square Attached	\square In Process		区 Unavailable	
Medical Treatment：					
Skin Decontamination：	$\square \mathrm{Yes}$	区No	Date：		
Decorporation：	\square Yes	No	Agent：		Date：
Catharsis：	$\square \mathrm{Yes}$	No	Agent：		Date：
Surgical excision：	$\square \mathrm{Yes}$	® No	Date：		

EVALUATION METHODOLOGY：	
Assumptions：	Acute inhalation intake of ${ }^{239} \mathrm{Pu}, 100 \%$ Class $\mathrm{Y}, 1 \mu \mathrm{~m}$ AMAD particle size on 2／17／66
Code／Model used for：	Intake Estimate： Dose Estimate：

RESULTS SUMMARY	
Estimated Intake Activity（pCi）：	4,400
50 YR CEDE（rem）： $1.4(0.014 \mathrm{~Sv}$ ）	
Organ Dose Equivalent Summary	$\mathbf{5 0}$ YR CDE（rem／Sv）
Bone Surface	$14 / 0.14$
Lung	$5 / 0.05$
Liver	$2.5 / 0.025$
Red Marrow	$1.1 / 0.011$
Other	$0.2 / 0.002$
Testes	$0.2 / 0.002$

DOSE ASSESSOR：	DATE：	PEER REVIEWER：	DATE：
Signature：		Signature：	
Print Name：		Print Name：	
SSN：		SSN：	

| RECOMMENDATIONS： | |
| :--- | :--- | :--- | :--- | :--- |
| Additional Bioassay Required
 Suggested Sampling Frequency：
 Work Restrictions： | N／A |

Internal Dosimetry Case Narrative

Identification:

> Name:

SSN:

Incidents:

Individual participated on site in response duties resulting from an accident involving three nuclear weapons at Palomares, Spain on January 17, 1966. Individual may have been exposed to weapons materials (primarily plutonium-239) by inhalation and ingestion from contaminated weapon and aircraft debris, lands, and vegetation. Primary activities included search, radiological monitoring, recovery of accident debris, and processing for disposal.

Previous Intake/Dose Assessments:

This assessment applies to Palomares accident activities only. No previous intakes or doses were considered.

Other Information:

None.
Radionuclide(s): ${ }^{239} \mathrm{Pu}$.

Assumptions/Basis/Data Sources:

Acute inhalation intake of Pu-239; 100% Class Y; $1 \mu \mathrm{~m}$ AMAD particle size on $2 / 17 / 66$. The date is the midpoint of the period on station from 2/6/66 to 2/28/66.

Inhalation was assumed as the major route of entry because the primary contaminant was created by explosion and fire and deposited in sandy soil and on buildings and plants. Conditions were generally windy and significant activity was underway.

Dose was determined entirely from modeling intake based on the following urinalysis results for this individual. This individual's sample was identified for a follow-up analysis using alpha spectrometry after the initial gross alpha result was reviewed. That is, the initial urine sample for this individual was reprocessed radiochemically for alpha spectrometry. Results of the follow-up alpha spectrometry analysis are reported below and were used in preparing the dose estimate.

Sample	Analysis*	Sample Date	Result (pCi/day)	Error (pCi/day)	Included
$66-2446$	G	$3 / 8 / 66$	1.49	0.790	
$66-3273$	AS	$6 / 1 / 66$	ND	ND	\checkmark
$66-3273$	G	$6 / 1 / 66$	NR	NR	
G means gross alpha counting; AS means alpha spectrometry.					

Intakes and estimates of dose were prepared using CINDY Version 1.4 and LUDEP Version 2.05.
Intake was estimated using the Jones excretion model in CINDY and LUDEP.
Inhalation intake was estimated using the ICRP 66 respiratory tract model in LUDEP.
CINDY estimated dose derived using the ICRP 30, Part 4, General Systemic Model and weighting factors; and LUDEP used the recommendations of ICRP 60.

Modeling:

CINDY and LUDEP were used to estimate the intake and dose with the following results:

Model	Intake (pCi)	CEDE $(\mathrm{rem} / \mathrm{Sv})$
CINDY	4,400	$1.4 / 0.014$
LUDEP	12,400	$0.9 / 0.009$

Doses to individual organs and estimation of the effective dose equivalent using CINDY reported the following results:

Organ	Dose Equivalent $(\mathrm{rem} /$ Sv $)$	Weighting Factors	Weighted Organ Dose Equivalent (rem/Sv)
Testes	$2.0 \mathrm{E}-01 / 2.0 \mathrm{E}-03$	$2.5 \mathrm{E}-01$	$4.9 \mathrm{E}-02 / 4.9 \mathrm{E}-04$
Breast	$6.5 \mathrm{E}-06 / 6.5 \mathrm{E}-08$	$1.5 \mathrm{E}-01$	$9.8 \mathrm{E}-07 / 9.8 \mathrm{E}-09$
Red Marrow	$1.1 \mathrm{E}+00 / 1.1 \mathrm{E}-02$	$1.2 \mathrm{E}-01$	$1.3 \mathrm{E}-01 / 1.3 \mathrm{E}-03$
Lung	$5.0 \mathrm{E}+00 / 5.0 \mathrm{E}-02$	$1.2 \mathrm{E}-01$	$6.0 \mathrm{E}-01 / 6.0 \mathrm{E}-03$
Thyroid	$6.1 \mathrm{E}-06 / 6.1 \mathrm{E}-08$	$3.0 \mathrm{E}-02$	$1.8 \mathrm{E}-07 / 1.8 \mathrm{E}-09$
Bone Surface	$1.4 \mathrm{E}+01 / 1.4 \mathrm{E}-01$	$3.0 \mathrm{E}-02$	$4.1 \mathrm{E}-01 / 4.1 \mathrm{E}-03$
Liver	$2.5 \mathrm{E}+00 / 2.5 \mathrm{E}-02$	$6.0 \mathrm{E}-02$	$1.5 \mathrm{E}-01 / 1.5 \mathrm{E}-03$
Other	$2.3 \mathrm{E}-01 / 2.3 \mathrm{E}-03$	$6.0 \mathrm{E}-02$	$1.4 \mathrm{E}-02 / 1.4 \mathrm{E}-04$
Lower Large Intestine	$5.0 \mathrm{E}-04 / 5.0 \mathrm{E}-06$	$6.0 \mathrm{E}-02$	$3.0 \mathrm{E}-05 / 3.0 \mathrm{E}-07$
Upper Large Intestine	$1.7 \mathrm{E}-04 / 1.7 \mathrm{E}-06$	$6.0 \mathrm{E}-02$	$1.0 \mathrm{E}-035 / 1.0 \mathrm{E}-037$
Small Intestine	$3.4 \mathrm{E}-05 / 3.4 \mathrm{E}-07$	$6.0 \mathrm{E}-02$	$2.1 \mathrm{E}-06 / 2.1 \mathrm{E}-08$
Effective Dose Equivalent			$1.4 \mathrm{E}+00 / 1.4 \mathrm{E}-02$

One urine sample was analyzed by gross alpha counting only, and the other was analyzed by both gross alpha counting and alpha spectrometry. For the sample analyzed with both methods, the gross alpha analysis was not included in the modeling since no result was reported and an alpha spectrometry result was available for the same sample. The alpha spectrometry sample result was reported as No Detectable Activity. A value of 0.003 pCi was used to represent this outcome. The gross alpha sample was also excluded because it was suspected of contamination during sample collection on the site and because it did not fit the expected pattern of urinary excretion. The result was fit using CINDY and the Jones excretion model, to estimate an intake ($4,400 \mathrm{pCi}$), organ doses, and a CEDE ($1.4 \mathrm{rem} / 0.14 \mathrm{~Sv}$; ICRP-30) as shown above. LUDEP was also used to estimate an intake of $12,400 \mathrm{pCi}$ and a CEDE (ICRP-60) of $0.9 \mathrm{rem}(0.009 \mathrm{~Sv})$.

In a separate run that used the gross alpha result, CINDY produced estimated intake and CEDE of $890,000 \mathrm{pCi}$ and $270 \mathrm{rem}(2.7 \mathrm{~Sv})$ respectively. However, these estimates were not considered realistic for the reasons stated above.

Conclusion:

Based on the results of intake estimates and dose calculations, this individual received an estimated intake of about $4,400 \mathrm{pCi}$ of ${ }^{239} \mathrm{Pu}$ resulting in a 50 -year committed effective dose equivalent of $1.4 \mathrm{rem}(0.014$ Sv). That dose is much less than the cumulative dose (7 rem) from a lifetime (70 years) of exposure at the
current level (0.100 rem) for members of the public. Serious health effer current level (0.100 rem) for members of the public. Serious health effects are not normally associated with these dose levels.

Prepared By:

Name: \qquad
Signature: \qquad Date: \qquad

Peer Reviewed By:
Name: \qquad
Signature: \qquad Date: \qquad

[^7]

Release of this document is restricted under the provisions of the Privacy Act, 5 U.S.C. 552(a). C.2-371

PVT								
$66-2146$								
8ASE (87-60) Giessen		$\begin{aligned} & \hline \text { OCCUPATION (61-62) } \\ & 57 E 20 \\ & \hline \end{aligned}$		 				
DATE RECEIVED 7 April 1966		SAMPLE VOLUME 750						
TECHNIGIAN (sig mature (ib) (6)			H M Hux					
URINE		\cdots						
Counter Number	38*7					Countor Number		-
Counter Bkg. (epm)	0.03					"Countar Bkg.		
Countor Eff. (\%)	0.45				-	Countor Eff.		
Date/TIme - Start	$4-28-66$					Daie/TIme - Stort		
-Stop			,					
Total Counts	1411					Toial Counts		
Counting Tlme	960					Counting Tima		
Gross cpm	1.47		h.			CGrós ${ }^{\text {cospm }}$		
Bkg. Cpm	0.07					8kkg cpm		92PC
Net cpm	1.44		\cdots	Not mv/ see ${ }^{\text {a }}$		Hoot epm		28BB
dpm.	3,20		4	curlos m mve	3			C-
dpm/24 hr. (69.74),			, , 7^{2},			$\mathrm{dpg} / \mathrm{cc}$ co-		
K-40 Corrretiorpull	1.92 ± 0.11		\therefore	that fers		Noutron Doso (rads) (63.		
Not-arderiggel	1.44 ± 0.1		\%			We7'ma $(69-74)$		
$\mathrm{D}(\mathrm{q})(63.68)$					焱	$D(\mathrm{~g})(63.68)$		

Internal Dosimetry Evaluation Form

RECOMMENDATIONS:

Additional Bioassay Required
Suggested Sampling Frequency:
Work Restrictions:

[^8]Internal Dosimetry Case Narrative

Identification:

Name:
SSN:

Incidents:

Individual participated on site in response duties resulting from an accident involving three nuclear weapons at Palomares, Spain on January 17, 1966. Individual may have been exposed to weapons materials (primarily plutonium-239) by inhalation and ingestion from contaminated weapon and aircraft debris, lands, and vegetation. Primary activities included search, radiological monitoring, recovery of accident debris, and processing for disposal.

Previous Intake/Dose Assessments:

This assessment applies to Palomares accident activities only. No previous intakes or doses were considered.

Other Information:

None.
Radionuclide(s): ${ }^{239} \mathrm{Pu}$.
Assumptions/Basis/Data Sources:
Acute inhalation intake of Pu-239; 100\% Class Y; $1 \mu \mathrm{~m}$ AMAD particle size on $3 / 26 / 66$. The date is the midpoint of the period on station from 3/14/66 to 4/8/66.

Inhalation was assumed as the major route of entry because the primary contaminant was created by explosion and fire and deposited in sandy soil and on buildings and plants. Conditions were generally windy and significant activity was underway.

Dose was determined entirely from modeling intake based on the following urinalysis results for this individual. This individual's sample was identified for a follow-up analysis using alpha spectrometry after the initial gross alpha result was reviewed. That is, the initial urine sample for this individual was reprocessed radiochemically for alpha spectrometry. Results of the follow-up alpha spectrometry analysis are reported below and were used in preparing the dose estimate.

Sample	Analysis*	Sample Date	Result (pCi/day)	Error (pCi/day)	Included
$66-2860$	AS	$4 / 8 / 66$	0.296	0.016	\checkmark
$66-2860$	G	$4 / 8 / 66$	0.619	0.203	
$66-3241$	AS	$5 / 26 / 66$	NR	NR	
$66-3241$	G	$5 / 2666$	0.423	0.423	\checkmark
* G means gross alpha counting; AS means alpha spectrometry.					

Intakes and estimates of dose were prepared using CINDY Version 1.4 and LUDEP Version 2.05.
Intake was estimated using the Jones excretion model in CINDY and LUDEP.
Inhalation intake was estimated using the ICRP 66 respiratory tract model in LUDEP.
CINDY estimated dose derived using the ICRP 30, Part 4, General Systemic Model and weighting factors; and LUDEP used the recommendations of ICRP 60.

Modeling:

CINDY and LUDEP were used to estimate the intake and dose with the following results:

Model	Intake (pCi)	CEDE $(\mathrm{rem} / \mathrm{Sv})$
CINDY	400,000	$120 / 1.2$
LUDEP	$1,280,000$	$90 / 0.9$

Doses to individual organs and estimation of the effective dose equivalent using CINDY reported the following results:

Organ	Dose Equivalent (rem/Sv)	Weighting Factors	Weighted Organ Dose Equivalent (rem/sv)
Testes	$1.8 \mathrm{E}+01 / 1.8 \mathrm{E}-01$	$2.5 \mathrm{E}-01$	$4.5 \mathrm{E}+00 / 4.5 \mathrm{E}-02$
Breast	$5.9 \mathrm{E}-04 / 5.9 \mathrm{E}-06$	$1.5 \mathrm{E}-01$	$8.9 \mathrm{E}-05 / 8.9 \mathrm{E}-07$
Red Marrow	$9.6 \mathrm{E}+01 / 9.6 \mathrm{E}-01$	$1.2 \mathrm{E}-01$	$1.2 \mathrm{E}+01 / 1.2 \mathrm{E}-01$
Lung	$4.6 \mathrm{E}+02 / 4.6 \mathrm{E}+00$	$1.2 \mathrm{E}-01$	$5.5 \mathrm{E}+01 / 5.5 \mathrm{E}-01$
Thyroid	$5.6 \mathrm{E}-04 / 5.6 \mathrm{E}-06$	$3.0 \mathrm{E}-02$	$1.7 \mathrm{E}-05 / 1.7 \mathrm{E}-07$
Bone Surface	$1.2 \mathrm{E}+03 / 1.2 \mathrm{E}+01$	$3.0 \mathrm{E}-02$	$3.7 \mathrm{E}+01 / 3.7 \mathrm{E}-01$
Liver	$2.2 \mathrm{E}+02 / 2.2 \mathrm{E}+00$	$6.0 \mathrm{E}-02$	$1.3 \mathrm{E}+01 / 1.3 \mathrm{E}-01$
Other	$2 . \mathrm{E}+01 / 2.1 \mathrm{E}-01$	$6.0 \mathrm{E}-02$	$1.3 \mathrm{E}+00 / 1.3 \mathrm{E}-02$
Lower Large Intestine	$4.5 \mathrm{E}-02 / 4.5 \mathrm{E}-04$	$6.0 \mathrm{E}-02$	$2.7 \mathrm{E}-03 / 2.7 \mathrm{E}-05$
Upper Large Intestine	$1.5 \mathrm{E}-02 / 1.5 \mathrm{E}-04$	$6.0 \mathrm{E}-02$	$9.1 \mathrm{E}-04 / 9.1 \mathrm{E}-06$
Small Intestine	$3.1 \mathrm{E}-03 / 3.1 \mathrm{E}-05$	$6.0 \mathrm{E}-02$	$1.9 \mathrm{E}-04 / 1.9 \mathrm{E}-06$
Effective Dose Equivalent			$1.2 \mathrm{E}+02 / 1.2 \mathrm{E}+00$

Two urine samples were analyzed by gross alpha counting and alpha spectrometry. For the first sample, the gross alpha analysis was not included in the modeling since an alpha spectrometry result was available for the same sample. For the second sample, no result was reported for the alpha spectrometry analysis, so the gross alpha counting result was used. The results were fit using CINDY and the Jones excretion model, to estimate an intake ($400,000 \mathrm{pCi}$), organ doses, and a CEDE ($120 \mathrm{rem} / 1.2 \mathrm{~Sv}$; ICRP-30) as shown above. LUDEP was also used to estimate an intake of $1,280,000 \mathrm{pCi}$ and a CEDE (ICRP-60) of
90 rem (0.9 Sv). 90 rem (0.9 Sv).

Conclusion:

Based on the results of intake estimates and dose calculations, this individual received an estimated intake of about $400,000 \mathrm{pCi}$ of ${ }^{239} \mathrm{Pu}$ resulting in a 50 -year committed effective dose equivalent of 120 rem (1.2

Sv). That dose is more than the cumulative dose (7 rem) from a lifetime (70 years) of exposure at the current level (0.100 rem) for members of the public. It is more than the working lifetime limit of 50 rem recommended by the National Council on Radiation Protection and Measurements (NCRP). These estimated dose levels are significant, although they were based on one sample that may have been collected on-site. However, follow-up urine sampling should be considered to provide additional assessment of the exposure.

Prepared By:

Name: \qquad
Signature: \qquad

Peer Reviewed By:

Name: \qquad
Signature: \qquad Date: \qquad

Appendix C. 3

Contamination Cutoff Cases

Portions of this report have been designated records subject to the restriction of the Privacy Act, 5 U.S.C. 552(a) and are so marked.

APPENDIX C. 3 Contamination Cutoff Cases

This section contains the intake and dose estimates for individuals whose urinalysis results were categorized as below a "contamination cutoff" of 0.1 picocuries per day ($\mathrm{pCi} / \mathrm{d}$). These individuals primarily submitted samples while on-site at Palomares. Most of these initial samples were analyzed by the gross alpha procedure. The results of the analysis were less than $0.1 \mathrm{pCi} / \mathrm{d}$ and were evaluated for intake and dose. Most samples collected became contaminated with plutonium because of limited controls on spread of the very low amounts required to indicate a positive urinalysis result. The main body of the report contains a discussion on the problem of sample contamination and the "contamination cutoff".

This "contamination cutoff" group consisted of 314 individuals. Their urinalysis results ranged from 0.002 to $0.099 \mathrm{pCi} / \mathrm{d}$ for those processed by the gross alpha procedure and from 0.018 to $0.097 \mathrm{pCi} /$ day for those processed by alpha spectrometry. Intakes ranged from 1,500 to 150,000 picocuries and produced 50-year committed effective dose equivalents (CEDEs) of 0.46 to 46 rem (0.0046 to 0.46 Sv). Table C.3-1 shows the distribution of CEDE for this group and indicates that most individuals' doses were relatively low. This section contains a listing of the results of the assessments. Individual narrative summaries were not prepared for these

Table C.3-1 Distribution of effective doses.

CEDE Range (rem)	Number of Cases
$0-10$	149
$10-20$	94
$20-30$	55
$30-40$	14
$40-50$	2

individuals.

The listing requires some explanatory notes to clarify features of the data presented. These notes include the following.

- An entry of " n / a " means that data were not available in any of the records reviewed generally because no entry was recorded.
- An entry of " NR " means that a result for an analysis was not recorded on the appropriate data form.
- An entry of "ND" means that an analytical result was recorded as No Detectable Activity (NDA).
- An entry of "(12-hr)" in a Sample Volume cell means that a data form for the sample noted that the sample was collected for 12 hours.
- A shaded cell represents a result for a sample (collected on site) that exceeded $0.1 \mathrm{pCi} /$ day; the established maximum for modeling individuals in the "Contamination Cutoff" category.
- An entry of "mean" represents the average value for intake or CEDE from two or more sample results for the same person.

	NAME	Results of Modeling Individuals with Samples Assumed to be＂Uncontaminated．＂									Coll shaded＝Addlionel sampla for indiv not modolod sinca >0.1 pCl／sampla， NR ，or ND			50．YEAR CEDE （rom／Sv）
		SSN	$\begin{gathered} \text { START } \\ \text { EXPOSURE } \\ \text { DATE } \\ \hline \end{gathered}$	$\begin{gathered} \text { END EXPOSURE } \\ \text { DATE } \\ \hline \end{gathered}$	$\begin{gathered} \text { ESTMMATED } \\ \text { ACUTE } \\ \text { EXPOSURE } \\ \text { DATE } \\ \hline \end{gathered}$	SAMPLE甘	$\begin{gathered} \text { SAMPLEE } \\ \text { DATE } \\ \hline \end{gathered}$	$\begin{gathered} \text { ELAPSED } \\ \text { DAYS } \\ \hline \end{gathered}$	SAMPLE VOLUME （mL）	ANALYSIS	$\begin{gathered} \text { RESULT } \\ \text { (pCll } \\ \text { samplo) } \\ \hline \end{gathered}$	＋1／（pCll sampla）	$\begin{gathered} \text { INTAKE (1000s } \\ \mathrm{pCl}) \end{gathered}$	
－	（b）（6）	（b）（6）	02／11／68	03／19／66	03／01／38	60－2200	03／19／66	18	900	Gross Alpha	0.035	$8750 \mathrm{E}-03$	350	$11 / 0.11$
\bigcirc			0205／66	02／25／66	02115／68	66－1340	02／25／66	10	1300	Gross Alpha	0.022	$1.850 \mathrm{E}-02$	18.0	5.510 .055
¢			02121／66	03／18／66	03／05／66	66－2258	03／18／66	13	780	Gross Apha	0.034	7.260 E .02	31.0	$95 / 0095$
（1）			02／21166	03／19／68	03／06／68	66－2329	03／19／66	13	700	Gross Aphia	0.021	$7.350 \mathrm{E}-02$	19.0	580.058
\cdots			02113／66	03／00166	$02 / 24168$	86－2425	03／08／66	12	1000	Gross Apha	0.010	$2.740 \mathrm{E}-02$	92	2810.028
			02121／66	03／11／66	03／05／6\％	66－2245	03／18／66	13	1000	Gross Alpha	0.098	$1.090 \mathrm{E} \cdot 01$	890	$27 / 0.27$
9			02108／66	02／28136	02111／68	66－1357	02128／66	10	950 （12．hr）	Gross Alpha	0.032	7．875E－03	520	16／0．18
근．			03／14／66	03／19／66	03／18／66	66－2333	03／19／66	3	900	Gross Alpha	0.096	$1.017 \mathrm{E}-01$	200	6 610．061
$\stackrel{\rightharpoonup}{0}$						66－2357	03／04／68		900	Gross Apha	0.15	1．190E－01		
ᄃ	（b）（6）	（b）（6）	01／18166	02103／83	01／26166	66－1823	02／03／68	8	800	Gross Apha	0.018	$4500 \mathrm{E}-03$	130	4／0．04
\％			02／11／68	03／08／66	02／2366	66－2454	03／08／63	13	1000	Gross Alpha	0.085	$2.460 \mathrm{E}-02$	77.0	24／0．24
¢						66－3121	04／13／68		700	Gross Apha	0.364	1.340 E .01		
守	（b）（6）	（b）（6）	02109／66	03108／66	02／22166	66－1889	03／08／68	14	940	Gross Apha	0.031	1.960 E .02	290	8．910．089
（1）			01／11／68	03108／68	$02111 / 6$	66－2615	03／08／68	25	850	Gross Alpha	0.070	7．900E．02	77.0	$24 / 0.24$
\bigcirc			02／13／66	03108／66	02124／66	66－2471	03／08／66	12	1000	Gross Alpha	0.077	1．913E．02	680	21／0．21
¢			02／09／68	03／08／68	02122／66	66－1882	03／08／66	14	750	Gross Alpha	0.017	2.000 E .02	160	4.900 .049
－		（b）（6）	02／10／66	03／19168	02128166	86－2208	03／19／66	19	900	Gross Apha	0.093	1．017E． 01	940	2910.29
¢			01／17／66	01／27166	01／22／66	66－1234	02119／66	28	1000	Gross Apha	0.036	$2.120 \mathrm{E}-02$	41.0	13／0．13
\bigcirc			01／18／66	02103／66	01／28166	66－1835	0203／66	8	750	Gross Apha	0.018	$4.500 \mathrm{E}-03$	130	410.04
菅			02／24／66	0319／66	03／07766	66－2552	03／19／66	12	820	Gross Alpha	0.049	7.140 E .02	430	13／0． 13
			02／21／68	03／12966	03／05／68	66－2088	03／18／68	13	860	Gross Aloha	0.098	7.640 E .02	87.0	27.027
$\stackrel{7}{7}$			01／18／66	01／20／66	01／19／68	66－1132	01／20／66	1	rua	Gross Alpha	0.029	1.930 E .02	25	077100077
00			01／11／66	03／19／66	0217768	66－2337	03／19／68	30	800	Gross Apha	0.016	$9.120 \mathrm{E}-02$	19.0	$5 \% 0.058$
\bigcirc			0211066	03／29／66	03／105／68	66.2593	03／29／68	24	1475	Gross Alpha	0.057	8．040E－02	63.0	$19 / 019$
\bigcirc			02／11／66	03／03／66	02123／68	66－2453	03／08／68	13	750	Gross Apha	0.024	$3.820 \mathrm{E}-02$	21.0	$6.5 / 0.065$
			02／17768	03／08／66	02126／68	86－1892	03108／68	10	930	Gross Apha	0.021	2.800 E .02	17.0	$52 / 0052$
C			01／18／66	02031／66	01／28／68	66－1820	0203／66	8	390	Gross Alpha	0.050	1．238E．02	350	11／0．31
\％			02／24／66	03／19／66	03／07／66	66－2566	03／19／66	12	800	Gross Atpha	0.060	8．030E．02	530	18／0． 16
\bigcirc			02／09／86	03／09／66	02123／68	66－2398	03／09／63	14	1200	Gross Alpha	0.028	7.150 E .02	250	7．710．077
O			02110166	03／19／60	02128／66	66－2046	03／19／68	19	695	Gross Alpha	0.013	$8.480 \mathrm{E}-02$	13.0	410.04
N			02／06／66	03／08／66	02／21／66	66－4869	03／08／66	15	1020	Gross Alpha	0.050	1.250 E .02	470	14：0．14
$\stackrel{\square}{0}$			01／18666	03／08／66	02／11／66	66－2623	03／0866	25	1100	Gross Apha	0.070	$7.900 \mathrm{E} \cdot 02$	770	$24 / 024$
			01／1866	01／22166	01／20166	66－1138	01／22／68	2	975	Gross Alpha	0.057	2.560 E .02	7.9	$24 / 0.024$
			02／26／66	03／18／68	031／08／66	66－2112	03／18／68	10	580	Gross Alpha	0.058	6．960E．01	470	14／0． 14
\bigcirc						66－1157	02／15／86		645	Gross Alpha	no	ND		
						66.3128	04／13／66		1650	Gross Alpha	NR	NR		
O1	（10）（6）	（b）（6）	01／18／66	03／28／66	02／21／66	66－2681	03／28／68	35	1520	Gross Apha	0.061	7．140E．02	750	23／0 23

NR - Not Reported, ND - No Detectabla Activily: N/a - not available

	Results of Modeling Individuals with Samples Assumed to be＂Uncontaminated．＂														
	NAME	SSN	$\begin{gathered} \text { START } \\ \text { EXPOSURE } \\ \text { DATE } \\ \hline \end{gathered}$	$\begin{gathered} \text { END EXPOSURE } \\ \text { DATE } \end{gathered}$	estimated ACUTE EXPOSURE DATE	SAMPLE\＃	SAMPLE	$\begin{gathered} \text { ELAPSED } \\ \text { DAYS } \end{gathered}$	SAMPLE VOLUME （ mL ）	ANALYSIS	Cell shaded＝Additonal cempla for indiv not modelod slica $>0.1 \mathrm{pCi} / \mathrm{sampla}$ ，NR，or ND			$\begin{gathered} \text { 50-YEAR } \\ \text { CEDE } \\ (\text { ram } / \mathrm{SV}) \\ \hline \end{gathered}$	
											$\begin{aligned} & \text { RESULT } \\ & (\rho C I I \\ & \text { samplo) } \end{aligned}$	$\begin{gathered} +1-(p \mathrm{p} C \\| \\ \text { samplo }) \end{gathered}$	$\begin{gathered} \text { INTAKE (1000s } \\ \text { pCi) } \end{gathered}$		
－	（10）（6）	（b）（6）	01／17／186	02／25／68	02105／66	68－1341	02／25／68	20	600	Gross Apha	0.030	$2.330 \mathrm{E}-02$	31.0	$95 / 0095$	
¢			02／10／66	03／04／68	02／21／66	66－2376	03／04／66	11	220	Gross Alpha	0004	1．010E．01	36	$11 / 011$	
3			01／18／68	01／29166	01／23／66	66－1077	01／29／68	6	1415	Pu239	0079	1．975E－02	420	13／0．13	
（1）			01／17／66	01／18／66	01／17／66	66－1134	01／18／68	1	n^{1}	Gross Alpha	0034	2 200E． 02	2.9	089100089	
あ			01／18／68	02／03／66	01／26／66	60－1834	02／03／66	B	280	Gooss Alpha	0018	4．500E－03	130	4.004	
7			02／18／68	03／04／83	02／25166	66－2342	03／04／65	7	900	Gross Alpha	0.092	1．060E－01	580	18／0． 18	
${ }_{0}$			03／12／68	03／19／66	03／15／66	66－2189	03／19／63	4	1000	Gross Alpha	0009	2 250E－03	28	$086 / 00086$	
군			01／18／66	01／20166	01／19／68	66－1128	01／20／63	1	800	Gross Alpha	0028	2．120E－02	2.4	0.74100074	
¢			02／21／66	03／19／68	03／00／66	66－2330	03／19／65	13	920	Gross Atpha	0047	8．110E－02	430	13／0． 13	
c			01／18／68	01／29166	01／23／68	66－1070	01／29／68	8	2200	Pu239	0.035	8．750E．03	19.0	5.80058	
呂			01／29／66	03／18／66	02122／66	66－2099	03／18／69	24	870	Gross Alpha	0.003	8 270E－02	3.3	1／0．01	
¢			02113／68	03／08／68	0224／66	66－2426	03／08／68	12	1000	Gross Alpha	0.034	1．890E－02	300	920092	
5			01／21／66	03／08／66	02／13／68	66－2449	03／08／63	23	600	Gross Alpha	0034	1．990E－02	37.0	1／10． 11	
			03／01／66	03／08／66	03／04／66	60－2450	03／08／65	4	1150	Gross Apha	0.072	2．510E－02	22.0	6.810068	
0			02110／68	03／08／68	02123／66	66－2447	03／08／63	13	1300	Gross Apha	0026	1660E－02	24.0	7.410074	
¢．			02106／66	02／28／66	0211766	66－1369	0212866	11	960 （12－ht）	Gross Alpha	0018	4．500E．03	310	$95 / 0095$	
0			03／15／6E	03／19／68	03／17／66	66－2570	03／19／65	2	700	Gross Alphe	0084	9．520E－02	120	3710037	
en			03／00666	03／19／66	03／13／66	66－2325	03／19／63	6	910	Gross Alpha	0082	$9.760 \mathrm{E}-02$	330	100.1	
O			03／16／66	03／19／68	03／17／86	66－2556	03／19／65	2	950	Gross Apha	0045	8．760E－02	B 1	1818019	
考			02／23／66	03／08166	03／01／66	66－2509	03／08／63	7	900	Gross Alpha	0.090	2 250E－02	570	18／0．18	
0			01／12／66	01129／68	01／23／66	66－1073	01／29／63	6	510	Pu239	0.097	2．425E－02	51.0	16／0．16	
＜			02／27／66	03108／66	03103／66	66－2456	03／00／65	5	700	Gross Apha	0．098	$2570 \mathrm{E}-02$	410	13／0．13	
0			02／27766	03／08／66	031／03／66	66－2465	03／00／68	5	550	Gross Alpho	0.072	$2350 \mathrm{E} \cdot 02$	300	020.092	
			01／17／66	01／18／66	0117766	66－1138	01／11／68	1	725	Gross Aphe	0.068	2．490E－02	58	1．8\％0．018	
$\stackrel{\square}{2}$			02／25／66	03／18／66	03／07／66	66－2237	03／18／68	11	340	Gross Aphe	0.062	9．660E－02	530	16／0．16	
						68－772	02／11／63		360	Gross Alpha	1	4．000E－01			
c	（b）（6）	（b）（6）	0272766	03／16／66	03／07／66	66－2670	03／27／68	20	820	Gross Alpha	0086	9．510E－02	68.0	21／0．21	
is			02／17／68	03108／66	02126／66	66－1894	03／08／68	10	900	Gross Apha	0075	$2380 \mathrm{E}-02$	62.0	19／0．19	
\bigcirc			02／25166	03／19／86	03／08／68	88－2228	03／19／63	11	920	Gross Alpha	0002	1060E－01	15	046／0．0046	
0			0222766	03／19／66	03099／66	66－2313	03／19／68	10	1350	Gross Alpha	0.061	8．870E－02	50.0	15／0．15	
N			02／10166	03／08／66	02／23／66	88－2451	03／08／68	13	1250	Gross Atphe	0012	1420E－02	11.0	3．4／0．034	
（1）			02／13／66	03／23／66	03／04／66	66－2583	03／23／68	19	1600	Gross Alpha	0.060	8．030E．02	610	19／0．19	
			02／25／66	03／19／68	03／08／68	66－2225	03／19／68	11	1000	Gross Apha	0037	9．770E－02	320	$98 / 8.098$	
			01／25／66	03／13／66	0217168	66－2547	03／13／68	24	750	Gross Atpha	0.098	1．010E－01	1100	34／0．34	
\bigcirc			02／13／66	03／08／66	0224／66	88－2467	03／00／68	12	1000	Gross Atpha	0.032	1．970E－02	29.0	$89 / 0.089$	
∞			01／18／66	02／03／66	01／26／66	66－1825	0203166	8	600	Gross Apha	0050	1238E－02	350	11／0．11	
			02／13／66	03119／66	03／02166	66－2182	03／19／63	17	900	Gross Alpha	0.072	1．800E－02	71.0	2210.22	

NR - Not Reported; ND - No Detectable Aclivity; n/a - not available

(1)	Results of Modeling Indivlduals with Samples Assumed to be "Uncontaminated."													
$\begin{aligned} & \overline{\overline{0}} \\ & \underset{\sim}{\omega} \\ & \underset{\sim}{2} \end{aligned}$											Cell shad modeled	Addilonal 3 sa ca $>0.1 \mathrm{pC} / 3 a$ $\mathrm{Ce}_{\mathrm{e}}>0.1 \mathrm{pCl} / 3$	pla for indiv not ple, NR, or ND	
$\begin{gathered} 0 \\ \frac{0}{n} \\ \frac{3}{\omega} \end{gathered}$	NAME	SSN	$\begin{gathered} \text { START } \\ \text { EXPOSUE } \\ \text { DATE } \\ \hline \end{gathered}$	$\begin{gathered} \text { END EXPOSURE } \\ \text { DATE } \end{gathered}$	$\begin{gathered} \text { EsTIMATED } \\ \text { ACUTE } \\ \text { EXPOSUUE } \\ \text { DATE } \end{gathered}$	SAMPLE\#	$\begin{gathered} \text { SAMPLE } \\ \text { DATE } \\ \hline \end{gathered}$	$\begin{gathered} \text { ELAPSED } \\ \text { DAYS } \\ \hline \end{gathered}$	SAMPLE VOLUME (mL)	ANALYSIS	$\begin{gathered} \text { RESULT } \\ \text { (pCII } \\ \text { samplo) } \\ \hline \end{gathered}$	$\begin{aligned} & \text { tr (} \mathrm{p} \mathrm{C} / l \\ & \text { samplo) } \end{aligned}$	$\begin{gathered} \text { INTAKE (1000s } \\ p C i) \end{gathered}$	S0-YEAR CEDE $($ rem/Sv $)$
응	(b) (6)	(b) (6)	01/18/66	01/29/66	01/23/66	66-1083	01129/66	6	690	Pu239	0.062	1550 E -02	330	10101
\bigcirc			02/18/66	03/08/66	0222786	66-2468	03108/68	9	450	Gross Apha	0.090	$2320 \mathrm{E} \cdot 02$	69.0	210.21
			03/26/66	04/10/66	04/02/66	66-3206	04/21/68	19	875 (12-ht)	Gross Apha	0.076	8240E-02	150.0	46/0.46
(1)			0209/66	- 02/23/66	0211866	68-1362	0228/66	10	675 (12-ht)	Gross Apha	0.041	1.013E-02	66.0	20/0.2
क			0211166	03/19/66	03101/66	66-2169	03/19/66	18	650	Gross Apha	0.047	1.163E-02	47.0	14/0.14
\%			01/22166	03/13/66	0216/66	66-2541	03/13/68	25	1400	Gross Apha	0.059	1.463E-02	650	2000.2
8			02/17/6E	03/03/68	02288/68	68-1890	03308/66	10	890	Gross Apha	0.087	3.460E-02	71.0	22\%.22
$\stackrel{\square}{\square}$			01/18/66	01/29/66	01/23/66	66-1076	01/29/66	6	510	Pu239	0.079	1.975E-02	42.0	13/0. 13
\%			02/25/66	03/19/66	03108/68	68-2203	0319/66	11	950	Gross Apha	0.032	7.875E-03	27.0	8310.083
c			02/21/66	03/18/86	0305/63	66.2255	03/18/68	13	720	Gross Apha	0.081	1.022E-01	73.0	220.22
a			01/18/66	03/19/66	02117/68	66-2042	03119/66	30	300	Gross Apha	0.076	7.120E.02	89.0	2710.27
9			02/13/66	03146/66	02128163	66-2029	03/16/66	16	620	Gross Apha	0.095	8.590E-02	92.0	28/0.28
耍			0209/66	03/04/66	02/20/65	66-2382	03304166	12	600	Gross Apha	0.062	8.760E-02	550	1710.17
\bigcirc			01/18/68	01/21/65	01/19/66	68-1127	01/21/68	2	550	Gross Apha	0.064	2.270E-02	8.7	$27 / 10.027$
\bigcirc			02105/66	03/08/66	0220/66	66-1888	03/08/66	16	810	Gross Apha	0.037	2.010 E .02	35.0	11/0.11
क.			0224/66	03/08/66	0310266	66-1884	03/08/66	6	600	Gross Apha	0.018	2.010 E .02	9.4	$29 \% 0.029$
O.			03/14/66	03/19/66	03/46/66	66-2138	03/19/66	3	550	Gross Apha	0.066	8.040E.02	140	4310.043
0			02/10/66	03/08/66	0223/66	66-2435	03/08/68	13	400	Gross Apha	0.024	1.390E-02	220	$68 \% .068$
\bigcirc			02110/68	03108/66	0222366	66-2432	03308/66	13	1000	Gross Apha	0.013	2.170E-02	11.0	34/0.034
\%			02/10/68	03/19/66	0228/63	66-2185	03/19/68	19	400	Gross Apha	0.059	1.463E-02	590	18/0.18
0			02/13/68	03/18/66	03101166	66-2250	03/18/68	17	830	Gross Apha	0005	$9047 \mathrm{E} \cdot 02$	5.0	15/0.015
근.			0206/66	02128/66	0217766	66-1374	02/28/63	11	930 (12-hr)	Gross Apha	0.072	1 103E-02	120.0	37/0.37
0			02/27/68	03/19/66	03109166	66-2321	03/19/68	10	550	Gross Apha	0.010	5.176E-02	8.6	2610.026
\bigcirc			01/18166	02103/66	01/26/63	66.1824	02/03/68	8	760	Gross Apha	0.018	4500 E -03	130	4/0.04
$\stackrel{\square}{\circ}$			01/24/66	03/04/66	0212/68	66-2374	03/04/6G	20	1300	Gross Apha	0.026	$7150 \mathrm{E}-02$	270	$83 / 0083$
Cl			01/18166	0203/66	$01 / 26166$	66-1818	02/03/68	8	930	Gross Apha	0.041	$1.013 \mathrm{E}-02$	290	8 890.089
C			01/18/66	02003/66	01/26/66	66-1828	02003/66	8	300	Gross Apha	0099	2478E.02	70.0	220.22
¢						66.2400	03109/68		350	Gross Apha	0.343	1850E-01		
\bigcirc	(b) (6)	(13) (6)	01/18/66	03/13/66	02144/66	66-2540	03/13/68	27	400	Gross Apha	0.050	1238E.02	56.0	177.17
¢			01/31/66	03/18/66	02123/66	66-2272	03/18/66	23	300	Gross Alpha	0.083	1.029E-01	900	28/0.28
N			02/10/66	03/09/68	0223166	66-2441	03008/66	13	950	Gross Apha	0.004	1642E-02	38	$12 / 0.012$
©			02/13/66	03/19/66	03/02166	66-2222	03/19/66	17	900	Gross Alpha	0.066	8 046E-02	65.0	200.2
			02/13/66	03/19/66	03/0266	66-2197	03/19/68	17	600	Gross Apha	0.030	$7500 \mathrm{E} \cdot 03$	30.0	920.092
\bigcirc			0224/66	03/19/66	03107/66	66-2171	03/19/86	12	750	Gross Apha	0.081	2.025E.02	72.0	220.22
ω			02/03/66	02125/66	02141/66	66-1339	02/25/68	11	490	Gross Alpha	0.062	2.420E-02	53.0	16/0.16
$\stackrel{\rightharpoonup}{ \pm}$			02/18/66	03/09/66	02/27/66	68-2054	03109/66	10	1480	Gross Alpha	0.075	7.120E-02	61.0	19/0.19
			02\%eß66	03/08/66	0222/66	68-1881	03/08/66	14	900	Gross Apha	0.036	2.190E-02	330	$10 / 0.1$

[^9]

Appendix C. 4

Remaining Cases

Portions of this report have been designated records subject to the restriction of the Privacy Act, 5 U.S.C. 552(a) and are so marked.

APPENDIX C. 4 Remaining Cases

Most of those who responded to the Palomares Broken Arrow submitted one urine sample that was collected during their time on site at Camp Wilson, or nearby. Furthermore, these generally were collected with containers designed for other purposes and under conditions that provided only limited protection against contamination with plutonium in blowing dust. Also, analysis of most of the samples by the gross alpha counting method served primarily as a screening for further study. Since most of the responders were not identified for follow-up, their initial samples were their only sample.

A small number of those in this group initially qualified for assessment in the "Contamination Cutoff" Cases. However, the chemical recovery for the samples processed for alpha spectrometry did not meet the criterion established for this study. Therefore, the data for these individuals are reported in this Remaining Cases category.

Intake and dose assessments were not performed for the cases in this category because the data were considered unreliable. Possible sample contamination, laboratory contamination, and uncertain recording of collection information limit the usefulness of these data for assessing intake and dose. The urine results ranged from 0 to 237.9 pCi per sample. The latter sample, collected three days after the first airmen arrived at the accident site, represents a prime example of possible contamination. That sample was the only sample available for the individual concerned. Personal discussions with one of the first responders indicated that the initial samples were collected using wine, milk, and any other type of bottle available in the village. (Skaar 1999).

The following pages provide a listing of the results for the Remaining Cases. If evaluated, the results documented would produce intakes ranging from about $75,000 \mathrm{pCi}$ to $20,000,000 \mathrm{pCi}$
corresponding to CEDEs of about 23 rem to 6,000 rem (0.23 to 60 Sv). Results of this magnitude require careful evaluation. The listings contain the basic sample identifying, collection and result information. Hardcopy laboratory records support each of the entries and are maintained by the Air Force.

[^10]

[^11]

Individuals with Urine Samples Classified as Remaining Cases													
Namo	85N	Estimated Start Exposura Dato	Estimatod End Exposure Dato	Estimated Acuto Exposure Data	Sampla No. Sampla Dato		$\begin{gathered} \text { Samplo Volt } \\ \text { (mLl } \end{gathered}$	Baso	Sampla Anal	Data Anal	Rasult (pCl/sampla)	24hr Activity〈pCliday)	Recorded Systomic Body Burden
(b) (6)	(b) (G)	01/20188	02109168	01/30/66	${ }^{66.820}$	0209168	880	Toul Rosteres	200	N/A	$2.45+1 / 1.29$	4.253	0.0112
(b) (6)	(b) (6)	02109/60	03/09/68	0223/66	-66-3264	$08101 / 88$ $03 / 2966$	2010 420	Toul Rosleres Torroion	1160 420	N/A	$\stackrel{0}{0}$	0.000 0.934	0.00427
		0208186	03/01/86	02118/66	86-1851	03/01/68	750	Moron	750	N/A	0.443+/-0.176	0.709	
				02118/68	66.1851	03/01/86	750			07/11/86	$0.48+1-0.020$	0.736	
(b) (6)	(b) (6)	$0205 / 88$	03/08/86	0220186	68.2481	03010168	900	Litle Creek	900	N/A	$0.132+1-0.030$	0.176	
		01/18/88	02/10/68	01/29/88	68-489	02107168	310	Moron	200	N/A	7.32+1-0.87	28.335	0.0915
					66-1442	03/02188	1920	Moron	1800	03/77138	0.432+/-0.27	0.432	0.00291
(10) (6)) (6)	${ }^{011 / 18 / 86}$	03177/66	02118/66	${ }^{866.2021}$	03177166	1400	${ }^{244 \mathrm{~h}} \mathrm{Avn}$ Bn	1400	N/A	ND	ND	
		01118166	02/06/86	$01 / 27168$	68.511	02028186	920	Torelon	200	N/A	1.46+\|-1.32	1.904	0.00584
		01/25/186 $02 / 0 / 186$	02090136 $02126 / 66$	02/01/66 $02115 / 86$	66-794	0209168	930 820	Hanaw, Gormany	200 852	N/A	${ }^{1.80+1-1.24}$	2.323	0.0079
					16.1437	0228166	820	Torrojon		08/23/66	${ }_{1} .512+1-0.113$	0.347 2.213	
(15) (6)	(1) (6)	02131/66	${ }^{03 / 191868}$	03/02166	66.2152	03/19/66	380	Torrejon	380	N/A	$0.208+1 / 0.129$	0.857	0.00127
		03311/86	03119198	03/15/86	66-2219	03/19166	${ }^{1050}$	Torrejon	1050	N/A	0.197+/-0.124	0.225	0.000958
		03/28/86	04/10/86	0403/66	66-2990	04/26/66	1875	Furth, Ger. US	1875	N/A	ND	ND	
								Army, 201h Sta Hosp.					
(b) (6)	(b) (6)	0209186	03108/86	02122166	66.1875	03/08/66	560	Moron	582	N/A	0.958	2.053	0.0049
		01118/86	03/08/86	02/11/66	66.2618	03108/66	1750	Vandenburg	1750	N/A	0.319+/-0.156	0.319	
		01118/66	02/10166	01/29/68	68-768	02/11/66	440	Torrejon	200	N/A	0.52+/-0.48	1.418	0.00536
		01/18/6E	03/08/66	02411/66	66.2620	03/08/66	1350	Vandenburg	1350	N/A	ND	No	
		01/18/66	01/22768	01/20/86	88.1107	01/22/88	1170	Pirmasens	1000	03/17168	ND	ND	
		02108186	02/17/66	0212166	66-1113	02177166	960	San Pablo	960	03/23/66	0.539+/-0.251	0.874	0.00125
		03114/68	03/19165	03/16/66	66-2154	03/19188	490	Torrejon	490	N/A	0.135+/-0.119	0.331	0.000196
		01/18/88	04/11/68	02/28/66	86.2945	04/22/68	1000	B097	1000	N/A	ND	ND	
(b) (6)	b) (6)	01/18/68	02/08/68	0128/66	${ }_{56-2945}$	04/22/66	1000			08/01186	NR	NR	
		01/18/68	03/17/68	02/18/68	66-2020	020108766	${ }^{620} 1450$	${ }_{\text {24th }}^{\text {Mun }}$ Morn	${ }_{1450}$	N/A	$\stackrel{\text { ND }}{\substack{\text { N } \\ 0.137+10.079}}$	ND 0.137	0.000948
		03/01/66	04/11/68	03/21/66	86.3199	05/12186	890	Torrejon	890	N/A	$0.186+/ 0.082$	0.251	0.00098
		01/28/36	02/28/66	02112/66	66-2884	03/31/86	1750	Zeragoza	1750	N/A	0	0.000	
					66.2884	03/31/66	1750			08/17/86	NR	NR	
(b) (6)		01/22186	04/11/68	03/02/68	86-2991	04/21/66	600	Furth, Ger. US	600	N/A	ND	ND	
								Army, 20th Sta Hosp. Then					
(0) (6)	3) (6)	01/18/68	02/04/36	01/26/68	66-350	0204/66	700	Torrejon	200	N/A	ND	ND	
		011/18168	$0^{02108 / 368}$	$01 / 27768$	68.501	02108186	440	Maron	200	N/A	$2.43+1 / 0.67$	6.627	0.0202
		01/18/66	03/03/68	02/09/66	66-1938	03/03/66	1700	625TH MASS (MAC)	1780	N/A	$2.20+1 / 0.29$	2.200	0.0215
(b) (6)) (6	$02 / 2766$	03/18/66	03/08/66	66-2285	03/18/86	780	Torrejon	780	N/A	0.173+/-0.130	0.266	0.00101
)	01/291/68	02/19/68	02008/88	68.1219	02191986	940	Torrejon	940	N/A	ND	ND	
		03/14/66	03/19168	03/16/66	${ }^{66-2582}$	03/19/66	ram	Torrejon	n/a	N/A	NR	NR	
) (6)) (6)	01/18/86	04/11/186	02/28168	66.3108	04/13/66	1900	Maron	950	N/A	0.364+/-0.135	0.364	
		0200168	03/08/68	02221/68	66-1883	03/08/86	720	Torrejon	720	N/A	0.120+1-0.030	0.200	0.000669
		$0204 / 66$	03/18/86	02225166	86.2092	03141866	780	USS FL. Snelling	780	N/A	0.261+/-0.109	0.402	0.00187
		03/14/86	03/20/66	03/17/66	86.2301	03/20168	750	Torejon	750	N/A	$0.129+1-0.131$	0.206	
		01/18/68	02109/68	01129/68	66-817	02099/66	680	Gemmany	200	N/A	ND	ND	
		01/19166	02/19/68	0203/66	66-2881	03/31/86	900	Tomejon	900	N/A	1.88 +1/0.33	2.240	
					66.2881	03/31/66	900			08/23/68	NR	NR	
(b) (6)	(1a) (6)	01/21/86	02/28/66	02/08/68	66-1439	${ }^{02228 / 68}$	760	Torrejon	790	N/A	ND	ND	
(b) (6)	(b) (6)				66-1439 $88-2350$	$022 / 12186$ $03 / 04 / 66$	760 600			08/23/68	$0.678+1 / 0.107$ ND	${ }^{1.071}$	
		02117/68	02255/68	02205/65	66-1351	02125/66	720	Moron	748	N/A	$0.410+1 / 0.588$	0.683	
		0131788	0 018188	0223366	86:2115	$031 \mathrm{~B} / 66$	890	Giasson	890	N/A	6.13777.0.096	0.77	0.06099
		01/181868	02118/60	0201186	66-980	02/16/86	760	Torrejon	200	N/A	NR	NR	
		02/18/86	03/19/66	03/04/66	66.2189	03/199/6B	800	Torrejon	800	N/A	0.202	0.303	
		01/25/86	02009/66	0201/68	66-734	02091/66	510	Hanaw, Garmany	200	N/A	0.78+/-0.55	1.835	0.0063
		02206686	02108/66	02077168	68-1381	0228186	330 (12-hr)	Moron	343	N/A	1.32	1.320	0.005
		0204/66	03/03/68	0217166	68-1912	03103/68	900	USS Charieston	900	N/A	$0.1999+$-0.089	0.265	
		022/25/66	03/17/68	03/07/68	68-2700	03/30/66	950	Moron	950	N/A	$0.158+/ \cdot 0.113$	0.200	

[^12]

[^13]

Palomares Nuclear Weapons Accident DRAFT

Palomares Nuclear Weapons Accident DRAFT
ねodey uo!jenjenヨ esog pes!ney

Individuals with Urine Samples Classified as Remalning Cases													
Name	SSN	$\begin{aligned} & \text { Estimatod } \\ & \text { Start } \\ & \text { Exposure } \\ & \text { Dato } \\ & \hline \end{aligned}$	Estumated End Exposuro Dato		Sample No. Sampla Date		$\begin{gathered} \text { Sample Vol } \\ (\mathrm{mL}) \end{gathered}$	Baso	Samplo Anal	Dato Anal	Result (pCl/samplo)	24hr Actlulty (pCl/day)	Recorded Systomle Bady Burdan
0) (6)	(b) (6)	02/11/66 $01 / 25 / 86$	$03 / 19166$ $0221 / 68$	03/01/66 02077168	$66-2132$ $68-1114$	$03 / 19 / 68$ $01 / 24 / 68$		Tormejon	880	N/A	0.212+1.0.134	0.289	0.00133
					$66-1114$ $66-1013$	$01 / 24 / 68$ $0221 / 88$	980 1870	Ramsietn	980	03/23/68	NR	NR	
(6) (6)					66-2583	03/14/66	2325	Ramsieln	2325	N/A	$0.120++-0.108$	ND 0.120	
	D) (6)	01/18/66	02/00/66	01/20/68	86-368	$0204 / 68$	900	Torrejon	200	N/A	$61.4+/ 4.3$	81.867	0.307
(b) (6)	(b) (6)	01/18/66	01/21/68	01/19/66	66-1180 $66-238$	02118/68	2120 500	Torejon	2120	N/A	ND	ND	
(b) (6)					-68-239	$01 / 21786$	400	Torrejon	200	N/A	NR	NR	
	(b) (6)	01/18166	0207665	01/28/68	66-460	$02107 / 68$	395	Momen	200	N/A	$\stackrel{\text { 2.08 }}{\text { NR }+-0.71}$	¢ ${ }_{\text {NR }}$	
		01/18/88	03/19/86	02181/68	66-2244	03/18/68	440	Torejon	440	N/A	ND	ND	0.0202
		01/18/68	0204/66	01/28166	66-339	02104188	900	Torejon	200	N/A	$2.22+1 \cdot 0.99$	2.960	0.0111
		02113/66	03/19/68	0310266	${ }^{86-2153}$	03/19168	940	Torrejon	940	N/A	$0.137+1 \cdot 0.107$	0.175	0.000839
		01/18168	0207/68	$01128 / 68$	${ }^{66-465}$	0207188	960	Torejon	200	N/A	$1.23+1 \cdot 0.82$	1.538	0.00469
		01/18/66	0303/86	02/09/60	86-1936	$031031 / 66$	860 1825	Torrelon	${ }_{1}^{2005}$	N/A	ND	ND	
(b) (6)								(MAC)		N/A	0.225+/-0.118	0.225	
	(6)	02081/66	02/25166	02116/66	68-1354	${ }^{02125 / 66}$	500	Toul Rosieres	520	N/A	ND	ND	
		01/29/66 01/18/60	$03 / 19166$ $02 / 26166$	0222166	66-2044	03/19/66	790	Torrejon	790	04/08/68	NR	NR	
(b) (6)				0200/66	66-1414	-02126/36	880 880	Torrejon	915	N/A	ND	ND	
) (6)	01/18186	01/21/36	01/19/68	66-265	0121/66	1100	Torrejon	200	N/A	NR	NR	
		01/18/66	0131/66	01/24/86	${ }^{66-381}$	0201/68	2800	Sembach	200	N/A	ND	ND	
(6) (6)	(0) (6)	01/18/68	03/22/36	02/08/68	${ }_{66.912}^{66-381}$	$0211 / 166$	2800			n/a	ND	ND	
(b) (6)	6				88-1298	03102/86	2910	Seymour Johnson	1000	N/A	ND	ND	
		01/31/66	0320186	02/24/66	66-2291	${ }^{\text {c }} 31201688$	655	Toul Rosleres Norithe	200	N/A	0.64+1/0.52	1.173	0.00375
		011118166	0222/66	02104/66	66-1243	c2/22/66	810	Offutt AFB, NE	842	N/A	0.133+-0. ND	0.290 ND	0.00124
		02/08/66	02/26/86	0216/66	${ }^{66-1423}$	02266/66	760	Moron	790	N/A	0.453+/0.175	0.715	
(10) (6)	(b) (6)	01/18/66		02/01/66	66.1423 68.967	02/20/66	760			06/23/68	0.057+/-0.023	0.090	
		02/18166	03/18/86	03/04/66	66-2114	03/18/86	430	Torrejon Moron	200	N/A	ND	ND	
		02/08/88	02281/66	0216/66	66-1433	02261/66	720	Moron	748	N/A	$0.131+/-0.178$	${ }_{0}^{0.500}$	0.00137
		0210160	03/08/68	02/23/86	66-2510	03/08/166	1000	Maron	1000	N/A	0.45	0.540	
		01/18/66	03/25/88	02/20/66	60-2597	03/25/86	950	USAH Wurzurg.	950	NIA	$0.371+/-0.210$	0.469	
(b) (6)	(b) (6)	02/27186	03/19/88	03/09/88	66-2125	03/19/66	940	Torrejon	940	N/A	ND	ND	
		02105/86	02125/86	02115/86	60-1349	0225/66	600	Sombach	624	NIA	$0.176+/-0.574$	0.352	
		-0209/68	03/01/88	02199/66	66-1852	03/01/66	600	San Pablo	800	N/A	1.86 + -0. 35	3.720	
		-02/25/66	031/1/768	03/07/86	${ }_{686}^{66-2284}$	03111/86	950	Moron	950	N/A	$0.181+/-0.113$	0.203	0.000986
		0202/86	0212260	02/12/66	66.1088	02222186	770 370	San Pablo	370	N/A	$2.77+1-0.96$	4.234	0.0166
b) (6)) (6)				66.2592	03/28/66	1750	San Pablo	1750	N/A	$0.229+1 / 0.184$	0.229	
		02121/88	03/19/68	03/04/86	${ }^{66}$-2048	03119168	800	Moron	800	NIA	0.269 $/$ /0. 109	0.404	
		0214888	03/12166	03/01/68	${ }_{66 \text { 6-2033 }}$	03/18168	1000	Torrejon	1000	N/A	. $398+1 / 0.175$	0.475	
		02106166	0208166	0207168	86.1397	0228/68	880 (12-hr)	Moron	915	N/A	$0.167+1-0.093$ 0.195	0.167 0.195	
		01141/66	03/08/66	$02111 / 86$	68.2477	03/08/66	250	Torrelon	250	N/A	0.38	1.728	0.0008
		01118/66	020808168	01/27/86	68.502	02106/06	860	Torrejon	200	N/A	2.36+1-0.99	3.293	0.01
		$01 / 29 / 68$ $03 / 14 / 66$	02/22/68	02/10/88 $031 / 8 / 68$	66.1090 66.2159	02/22/88	1460	Torrejon	1460	031/7/86	$4.35+1-0.53$	4350	0.0212
		03/21/88	04/11/66	03/31/86	66-3198	03/19/66	${ }_{9} 900$	Torrajon	900	N/A	$0.148+/-0.135$	0.197	0.000215
		01/11/86	02001/6	01/27/66	60-503	0206/66	900	Torrojon	950 200	N/A	${ }_{\text {0 }}^{0.191+1+-0.089}$	0.241	
		0227166	03/24/88	03/11/66	66-2698	09/05/68	800	Moron	800	N/A	$0.133+1-0.113$	${ }_{0}^{6.200}$	1.99
		$01 / 7716$	0202266	01/25/66	68-3211	05118/66	450	67ih ARS Prestwick MOA, Scolland	450	N/A	$0.161+1-0.078$	0.429	
(b) (6)	b) (6)	02/11/68	0215/8B	02/13/66	66.3208	0420/66	1340	Torrelon	670	N/A	0.500+/-0.198	0.500	

		Individ	uals with Urin	Samples	Classified a	S Remaining	Cases						
$\begin{aligned} & \text { Name } \\ & (b)(6) \end{aligned}$	SSN	$\begin{gathered} \text { Estumated } \\ \text { Start } \\ \text { Exposure } \\ \text { Date } \\ \hline \end{gathered}$	Estimatad End Exposura Dato	Estimated Acuta Exposura Dato	Samplo No.	Sample Dato	$\begin{gathered} \text { Somplo Vol } \\ \text { (mL) } \end{gathered}$	Basa	$\begin{aligned} & \text { Sampla } \\ & \text { Anal } \end{aligned}$	Date Anal	$\begin{gathered} \text { Result } \\ \text { (pCl/samplo) } \end{gathered}$	24hr Aetivity (pCl/day)	Recorded Systamic Body Burden
	(5) (6)	$01 / 181 / 88$ 020968	04/11/86 $03 / 09 / 66$	02281896 $02123 / 68$	${ }_{6}^{66-3208-5}$		1340 1000	$\stackrel{\text { N/a }}{\text { Torelon }}$	670 1000	N/A	${ }_{0}^{\text {a }}$ NR $136+1.0082$	NR	
		02109/68	03/09/66	${ }^{02123 / 66}$	${ }_{\text {cher }}^{66.2083}$	03/09/66	1000 1350	Torejon	1000 1350	N/A	${ }_{0}^{0.136+1 / 0.0082}$	0.163	0.000758
		$02111 / 86$ $02 / 1266$	$02111 / 86$ $03 / 1 / 86$	${ }^{02111 / 66}$	$66-2887$ $60-2031$	03/25/66 $03 / 16 / 86$	1350 960	Torrejon Moron	1350 960	N/A	$0.105+/-0.102$ $0.114+/-0.081$	0.105 0.143	0.000714
		02/13/66	03/19/8B	03/02/36	66-2135	03/19/66	920	Moron	920	N/A	$0.151+/-0.100$	0.197	0.000925
		0227/66	03/19/86	03/09/68	86-2139	03/19/60	950	Torrejon	950	N/A	$0.1302+/-0.1302$	0.164	
		011118/66	0204/36	01/26/96	66.355	02/4/166	560	Torrelon	200	N/A	ND	ND	
		0217108	03/10/38	02/27/66	86-2014	03/16/88	630	Torrejon	630	N/A	$0.176+1-0.114$	0.335	
		01118/66	03103/66	02209/36	86.1930	03/03/68	845	Albuquergue, NM	845	N/A	0.183+1-0.093	0.260	
		01118/68	02008/66	01/27/86	66.513	02060666	640	Moron	200	N/A	4.53+\|-1.06	8.494	0.0259
		01/18/68	0209/68	01/29/68	86.738	02<09168	970	Hanaw, Germany	200	N/A	ND	ND	
		01/11/68	03/20/86	02177166	86-2018	03/20/68	1320	Tnker AFB	1320	N/A	0.156+1-0.084	0.156	
		011/18/68	02006/66	$01 / 27138$	68-525	${ }^{02208 / 86}$	480	Torrejon	200	N/A	1.44+1-0.77	3.757	0.0115
		01123/86	03/20186	02120188	88.2305	03/20/66	880	Pirmasens	880	N/A	$0.214+1 / 0.129$	0.292	0.00183
		0221/68	03/18/88	03/05/66	66-2256	03/18/66	920	Zaragoza	920	N/A	$0.225+1 / 0.134$	0.293	0.00109
		011/18166	02/05/86	01/27786	${ }^{86-882}$	${ }^{022050566}$	950	Moron	200	N/A	1.22+1-0.73	1.541	0.00443
		02211/65	$03 / 18168$	$03 / 05186$	86-2100	03/11/886	980	Moron	980	N/A	$0.119+1 / 0.074$	0.146	0.000864
		02131/66	03/19/66	03/02268	66-2229	03/19/66	500	San Pablo	500	N/A	$0.226+1-0.134$	0.542	0.00184
		02019/86	03/08/96	02/22/36	88-1901	03/0986	880	Moron	880	N/A	$0.188+1 / 0.085$	0.254	
		01/18/66	01/21/38	01/19/68	${ }^{66-238}$	01/21/88	475	Torrejon	200	N/A	NR	NR	
(b) (6)		011/18/66	0129/86	0123/96	66.241 66.1212	$01 / 21 / 36$ $01 / 29 / 68$	350 880	Torejon San Pablo	200	N/A	$\underset{\substack{\text { NR } \\ 0.427+/ \cdot 0.159}}{ }$	NR 0.754	0.00108
	(b) (6)	01/18/166	01/21/36	01/19/36	88.234	01/21/86	490	Torrelon	200	N/A	${ }^{0.42}$	NR	0.00100
		02/24/68	03/19/66	03/07168	86-2168	03/19/66	1000	Toul Rosleres	1000	N/A	0.64	0.768	
		02061/60	02/26/66	0216/66	86.1424	02/26/66	860	Moron	894	N/A	$0.205+/-0.124$	0.285	
					66-1424	02126/68	860			06/28/66	NR	NR	
(10) (6)	(b) (6)	02113/66	${ }^{03143 / 36}$	02127166	${ }^{66.2678}$	03125/86	2000	Torre]on	2000	N/A	$0.125+1 / 0.094$	0.125	
		$011 / 17166$	0212156	01/30/68	68.777	0211266	292	Torrejon	200	N/A	$0.49+1 / 0.45$	2.014	0.00791
		011/1/68	02051/66	${ }^{01 / 27788}$	${ }^{66}$ 6-924	${ }^{02105 / 66}$	485	Torrejon	200	N/A	1.42+1-0.65	3.865	0.0105
		01/22/66	02/20166	02/05/86	86-1040	02120/86	2200	Furth, Ger. Us	200	03/17/186	12.91+1-3.87	12.910	
	(b) (6)							Army, 201 LSta Hosp.					
(1b) (6)		02/06/66	0226/36	0216/[6	86.1414	0226/68	640	Hosp. Moron	665	N/A	1.07+1/0.13	2.008	0.00454
		0222166	03/99/68	03/08/86	88-2194	03/19/86	800	Moron	800	N/A	ND	ND	
		01/18/66	0128/86	01/23/68	66-3026	05106/36	1400	Ramstein	1400	N/A	$0.131+1-0.057$	0.131	
		02108/68	03/19/86	0227/96	66-2183	03/19186	802	Toul Rosieres	800	N/A	0.829	1.240	
		01/18/66	0205/36	01/27/36	86-884	02005/66	880	Torrejon	200	N/A	ND	ND	
		0206166	0226/36	02148/36	68-1412	02126/86	650	Moron	676	N/A	0.135+1-0. 103	0.249	
	(b) (6)	03/44/86	03/28/56	03/20/66	66.1412	02126/86	${ }^{650}$			06/27768	NR	NR	
(b) (6)					${ }_{66-2280}$	03/29986	710	Torrejon	710	N/A	NO	ND	
					${ }_{66}^{66.2865}$	$04 / 08186$	1500	Torrejon	1500	${ }^{\text {N/A }}$	$1.16{ }^{+1 / 0.28}$	1.160	
(6)	(b) (6)	0209/88	03108/86	02/22768	- $\begin{gathered}66-2865 \\ 68-1865\end{gathered}$	-04/06/66	1500 800	Moron	800	08/30/66	NR	NR ND	
(${ }^{\text {(}}$					66-1865	03/08/88	800			07107166	0.273+1/0.220	0.410	
(16) (6)	(b) (6)	01/18/66	02/09/86	01/29136	66-656	02/09/66	1950	Blytheville AFB, AR	n/a	N/A	NR	NR	
(b) (6)	(b) (G)	01/188186	02205/36	$01 / 27 / 188$	${ }^{86-922}$	0205/66	820	Torrejon	200	N/A	NR	NR	
		03/26166	04/11/88	04/03/68	66.3110	04/13/66	${ }^{625}$	Moran	625	N/A	$0.330+1 / 0.087$	0.634	
		0211/66	03/12/66	02125/68	66-2641	03/28/66	600		600	N/A	0.287+/-0.168	0.574	
(b) (6)	(b) (6)	02008166	02118/38	02112186	${ }^{66-1388}$	02118/66	700		728	N/A	1.05	1.800	0.004
		01/18/66	0213/66	01/31/88	66-1441	03/02186	930	Moron	930	03/17/68	ND	ND	
		01/25/66	0209/56	02/01/88	86.811	02109/66	810	Hanaw, Germany	200	N/A	$1.164+1.74$	2.430	0.00873
		01/17166	0226/36	02108/36	B6. 1418	02126/66	860	Torrejon	915	N/A	0.117+/-0.157	0.160	
		01/18166	01/17/66	01/17/86	66-1100	01117/86	1180	Torrejon	1180	03/17768	ND	ND	
		03/26/66	03/29/68	03/27/86	86.3124	04/13/86	980	Moron	490	N/A	0.212+/.0.161	0.260	
(b) (6)	(13) (6)				66-3124-S	04/13/66	980	Moron	490	N/A	NR	NR	
		01/24/68	0130/36	01127156	${ }^{68 \cdot 2688}$	03/281866	1800	Torrelon	1800	N/A	$0.112+$-0. 101	0.112	
		$021 / 18168$ $01 / 18188$	$03 / 108168$ $0204 / 66$	- $01 / 2726868186$	${ }^{86-2472}$	(03108/86	900 950	Torajon Moron	900 200	N/A	$\stackrel{0.194}{\text { ND }}$	0.259	

Individuals with Urino Samples Classified as Remaining Cases

[^0]: Release of this document is restricted under tho provisions of the Privacy Act, 5 U.S.C. 552(a). C.2-272

[^1]: Release of this document is restricted under the provisions of the Privacy Act, 5 U.S.C. 552(a). C.2-278

[^2]: Release of this document is restricted under the provisions of the Privacy Act, 5 U.S.C. 552(a). C.2-279

[^3]: Release of this document is restricted under the provisions of the Privacy Act, 5 U.S.C. 552(a). C.2-281

[^4]: Release of this document is restricted under the provisions of the Privacy Act, 5 U.S.C. 552(a). C.2-335

[^5]: Release of this document is restricted under the provisinns of the Privacy Act, 5 U.S.C. 552(a). C.2-358

[^6]: Release of this document is restricted under the provisinns of the Privacy Act, 5 U.S.C. 552(a). C.2-364

[^7]: Release of this document is restricted under the provisings of the Privacy Act, 5 U.S.C. 552(a). C.2-370

[^8]: Release of this document is restricted under the provisions of the Privacy Act, 5 U.S.C. 552(a). C.2-375

[^9]: NR - Not Reported; ND - No Detectable Activity; N/a - not avalatle

[^10]: Palomares Nuclear Weapons Accident

 L00Z I! Id \forall

[^11]: 孔uәр！ววヲ suodeaM deeponn saseuoped

 LOOZ I！」dV
 Hoday uolyenjenヨ asoa pes！ned

[^12]: Palomares Nuclear Weapons Accident DRAFT

[^13]: I－\ddagger 亿ura
 bo0Z I！Id甘
 みodey uo！penjenヨ esod pes！ney

